

XML
Pocket Reference

THIRD EDITION

Simon St.Laurent
 and Michael Fitzgerald

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

,TITLE.6283 Page 1 Tuesday, July 11, 2006 11:29 AM

XML Pocket Reference, Third Edition
by Simon St.Laurent and Michael Fitzgerald

Copyright © 2005, 2001, 1999 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Simon St.Laurent
Production Editor: Claire Cloutier
Cover Designer: Hanna Dyer
Interior Designer: David Futato

Printing History:
October 1999: First Edition.
April 2001: Second Edition.
August 2005: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks of O’Reilly Media, Inc. The Pocket Reference series
designations, XML Pocket Reference, the image of a peafowl, and related
trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher and authors assume no responsibility for errors or omissions, or
for damages resulting from the use of the information contained herein.

0-596-10050-7
[C] [4/06]

,COPYRIGHT.6162 Page iv Tuesday, July 11, 2006 11:29 AM

iii

Contents

Introduction 1
A Simple XML Document 4

XML Structures 5
Elements 6
Attributes 13
Text 15
Character, Entity, and Predefined Entity References 16
Comments 19
The XML Declaration 20
Processing Instructions 22
CDATA Sections 24
The DOCTYPE Declaration 24
The xml:space Attribute 26
The xml:lang Attribute 27
The xml:id Attribute 28
XML Namespaces 29

Document Type Definitions 32

W3C XML Schema 47
Creating a Simple Schema 48
Compositors 56
XML Schema Structure Elements 64

iv | Contents

XML Schema Datatypes 85
XML Schema Constraining Facets 102
XML Schema Attributes for Use in Instance Documents 116

RELAX NG 118

Schematron 150
Core Elements 152
Other Elements 154

XML Specifications 160

Index 163

1

Chapter 1

XML Pocket Reference

Introduction
After several years of incredible hype, XML, the Extensible
Markup Language, has settled down to become a respectable
part of developers’ toolboxes. XML’s structured, text-based
format has made it easy for programming languages and envi-
ronments to support it, making XML the lingua franca of the
data exchange world. XML wasn’t the first way to do this, but
it was the first that successfully attained approachable sim-
plicity while representing complex data structures.

XML provides its users with tremendous flexibility. It defines
a set of hierarchical structures for containing content, but
leaves the details of those structures, including their names, to
the people who create XML vocabularies. XML’s common
structures make it possible to create parsers and other tool-
kits that work on any legal XML out there, while still allow-
ing customization of the data stored in those documents.
Developers can do generic processing on XML documents as
well as create applications that understand particular types of
XML documents.

This reference covers the core of the XML standards for repre-
senting data, including the core structures of XML 1.0 and 1.1,
namespaces, and schema languages for describing XML vocab-
ularies. It doesn’t cover tools for processing XML.

2 | XML Pocket Reference

In this latest edition of the book, Extensible Stylesheet Lan-
guage Transformations (XSLT) has been moved to a new, well-
earned location in a separate O’Reilly book—the XSLT 1.0
Pocket Reference—to make room here for schema information.

XML is a greatly simplified version of SGML, the Standard
Generalized Markup Language (ISO 8879:1986(E)). Any
legal XML document is, in fact, a legal SGML document, but
while SGML found most of its use in document-intensive
operations that often required the use of its many features,
XML reduced that feature set and is consequently much eas-
ier to use.

That simplicity has been rewarded with ubiquity. XML sup-
port is available for pretty much every programming lan-
guage now in use, though every language seems to treat it
differently.

Conventions Used in This Book
Italic

Used for filenames, URIs, new terms, and emphasis

Constant width

Used for names of XML elements, attributes, etc.; code
excerpts; characters; values; and other literal text

Constant width italic

Used for text to be replaced by the user

Constant width bold

Used for emphasis within code excerpts

Introduction | 3

The core of XML work, including responsibility for the key
specifications for XML 1.0, XML 1.1, Namespaces in XML 1.0
and 1.1, and XML Schema, is done at the World Wide Web
Consortium (W3C). For more on their operations, visit http://
www.w3.org/. The W3C is not by any means the only organi-
zation in the business of creating XML specifications. To see a
huge list of XML-based specifications and information on the
and organizations and individuals creating them, visit http://
xml.coverpages.org/. A brief list appears at the end of this
book.

XML documents must be well-formed, or in other words,
they must follow the rules of well-formedness laid down in
the XML spec. A well-formedness error is fatal in XML pro-
cessing. XML documents may also, but need not, be valid;
That is, they may conform to a DTD or schema if a schema is
available and if validation is performed with a validating
XML processor.

Differences Between XML 1.0 and 1.1
The main differences between Versions 1.0 and 1.1 are that
Version 1.1:

• Supports a later version of Unicode (4.0)

• Has a more liberal policy for characters used in
names

• Adds a couple of line-end characters (NEL [#x85]
and the Unicode line separator character [#x2028])

• Allows character references for control characters
that are forbidden in 1.0

For details, see http://www.w3.org/TR/xml11/#sec-xml11.

4 | XML Pocket Reference

A Simple XML Document
If you’re new to XML or just need to identify a feature you
haven’t seen before, looking at a sample document may be
helpful. The document shown in Example 1 contains a vari-
ety of XML features.

This document contains many common XML structures, each
of which is described briefly here and in greater detail later in
this book. Line 1 is an optional XML declaration that pro-
vides version and encoding information, plus a declaration
that indicates whether or not the document stands alone (i.e.,
whether it relies on external markup declarations). Line 2 is a
processing instruction—more precisely, an XML stylesheet
processing instruction that references a local CSS stylesheet.
Line 3 is a comment and line 4 is a document type declaration
(or DOCTYPE declaration) that points to a document type
definition, or DTD. A DTD contains rules for document vali-
dation. The message element start-tag, on line 5, is the root (or
document) element. This element contains several attributes
with varying purposes. The attribute on line 5 (xmlns) hap-
pens to be a namespace declaration, as is the attribute on
line 6 (namespace declarations are not normally processed
like other attributes). The xsi:schemaLocation attribute, on

Example 1. A simple XML document

1 <?xml version="1.0" encoding="UTF-8" standalone="no" ?>
2 <?xml-stylesheet href="mine.css" type="text/css" ?>
3 <!--This is a very simple document.-->
4 <!DOCTYPE message SYSTEM "myMessage.dtd" >
5 <message xmlns="http://simonstl.com/ns/examples/message"
6 xmlns:xsi="http://www.w3.org/2001/XMLSchema-

 instance"
7 xsi:schemaLocation="message.xsd"
8 xml:lang="en" date="2005-10-06" >
9 This is a message!

10 </message>

XML Structures | 5

line 7, associates the document with an XML Schema docu-
ment, also used for validation. The xml:lang attribute, on line
8, specifies that the English language is in use here, and the
date attribute value contains an ISO 8601–formatted date.
Line 9 shows the text content or character data content of the
message element. Finally, line 10 is the end-tag for the message
element. All of these features and more are covered in this
pocket reference.

XML Structures
Everything in an XML document is text—typically Unicode
text. Special characters (primarily < and >, but also &, '', and ')
are used to separate the text that identifies document struc-
tures from the text contained in those structures. The text
that represents the structure of the document is called
markup, as historically it was extra information added to text
documents to provide metadata, formatting, or other infor-
mation. Adding this information to a document is referred to
as “marking up” the document, although text and markup are
usually created simultaneously now.

As each structure is discussed, applicable productions from the
XML 1.0 and 1.1 specs will be listed in the order in which they
appear in the specs. However, productions for Letter, Base-
Char, IdeoGraphic, CombiningChar, Digit, and Extender are
omitted here for the sake of brevity (refer to Appendix B in the
1.0 spec, at http://www.w3.org/TR/REC-xml/#CharClasses). If
there are differences between the 1.0 and 1.1 productions, the
line representing the production will be appended by either 1.0
or 1.1; otherwise, the productions in both specs are the same.
Productions may be repeated for the reader’s convenience.

You will find references to the XML specification in this sec-
tion. Any reference preceded by a section symbol (§) is a refer-
ence to the XML spec. For example, §2.1 refers to Section 2.1
of the XML 1.0 and 1.1 specifications.

6 | XML Pocket Reference

Elements
Elements, which are the building blocks of XML documents,
are bounded by start-tags and end-tags that may hold con-
tent, or may consist of one empty-element tag.

Productions
[2] Char ::= #x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-
#xFFFD] | [#x10000-#x10FFFF] 1.0
[2] Char ::= [#x1-#xD7FF] | [#xE000-#xFFFD] | [#x10000-
#x10FFFF] 1.1
[3] S ::= (#x20 | #x9 | #xD | #xA)+
[4] NameChar::= Letter | Digit | '.' | '-' | '_' | ':' |
CombiningChar | Extender 1.0
[4] NameStartChar ::= ":" | [A-Z] | "_" | [a-z] | [#xC0-
#xD6] | [#xD8-#xF6] | [#xF8-#x2FF] | [#x370-#x37D] |
[#x37F-#x1FFF] | [#x200C-#x200D] | [#x2070-#x218F] |
[#x2C00-#x2FEF] | [#x3001-#xD7FF] | [#xF900-#xFDCF] |
[#xFDF0-#xFFFD] | [#x10000-#xEFFFF] 1.1
[4a] NameChar ::= NameStartChar | "-" | "." | [0-9] | #xB7
| [#x0300-#x036F] | [#x203F-#x2040] 1.1
[5] Name::= (Letter | '_' | ':') (NameChar)* 1.0
[5] Name ::= NameStartChar (NameChar)* 1.1
[10] AttValue ::= '"' ([^<&"] | Reference)* '"' | "'"
([^<&'] | Reference)* "'"
[14] CharData ::= [^<&]* - ([^<&]* ']]>' [^<&]*)
[15] Comment ::= '<!--' ((Char - '-') | ('-' (Char - '-
')))* '-->'
[16] PI ::= '<?' PITarget (S (Char* - (Char* '?>'
Char*)))? '?>'
[17] PITarget ::= Name - (('X' | 'x') ('M' | 'm') ('L' |
'l'))
[18] CDSect ::= CDStart CData CDEnd
[19] CDStart ::= '<![CDATA['
[20] CData ::= (Char* - (Char* ']]>' Char*))
[21] CDEnd ::= ']]>'
[25] Eq ::= S? '=' S?
[39] element ::= EmptyElemTag | STag content Etag
[40] Stag ::= '<' Name (S Attribute)* S? '>'
[41] Attribute ::= Name Eq AttValue
[42] Etag ::= '</' Name S? '>'
[43] content ::= CharData? ((element | Reference | CDSect
| PI | Comment) CharData?)*

XML Structures | 7

[44] EmptyElemTag ::= '<' Name (S Attribute)* S? '/>'
[66] CharRef ::= '&#' [0-9]+ ';' | '&#x' [0-9a-fA-F]+ ';'
[67] Reference ::= EntityRef | CharRef
[68] EntityRef ::= '&' Name ';'

Examples
<data>This is some data!</data>

<photo source="photos/mypic.jpg" description="photo of
 moi" />

<message xmlns="http://simonstl.com/ns/examples/message"
 xml:lang="en" date="20051006" >
 This is a message!
</message>

<date>
 <year>2005</year>
 <month>July</month>
 <day>01</day>
</date>

<mixed>This is a <italic>mixed</italic> message!</mixed>

Description

The most common structure in XML documents is the ele-
ment. Every XML document is required to have one com-
plete element in it, which may in turn contain other elements
or attributes. (It is possible and acceptable to create docu-
ments that contain only elements and content, without using
any of the other features of XML.)

Elements always have names. Element names must start with
a letter, underscore, or colon (though colons are definitely
discouraged) and may contain numbers and a wide range of
other characters, though whitespace is prohibited because it
marks the end of an element name.

8 | XML Pocket Reference

WARNING

Some of the older, simplified parsers—and even some of
the new ones—accept element names that begin with
numbers, and there are still some vocabularies out there
that use numbers as element names. This is not legal
XML.

Element names are case sensitive. The set of allowed charac-
ters in element names broadened from XML 1.0 to XML 1.1,
shifting from rules that forbade everything not permitted to
rules that allow everything not specifically excluded.

Although colons are allowed in XML element names, they
should be reserved for use with qualified or prefixed names
in namespaces, as most XML processors today expect colons
to separate namespace prefixes from the local element name.
Even if you don’t know what namespaces are or don’t care to
use them, you should avoid using colons in your element
names.

Start-tags and end-tags. Elements are identified with tags,
which come in three varieties: start-tags, end-tags, and
empty-element tags (described in the next section). Start-tags
take the following general form: <elementName [attributes]>.
A start-tag without attributes might look like this: <myElement>.
Start-tags indicate the beginning of an element, which reaches
its end (or “is closed”) when a matching end-tag appears. End-
tags look like this: </elementName>. Attributes may never
appear in end-tags, but whitespace after the elementName is
allowed. An end-tag matching the start-tag shown above
would look like this: </myElement>. Because element names are
case sensitive, the case of the elementName in the end-tag must
precisely match that of the elementName in the start-tag, charac-
ter for character, case for case.

XML Structures | 9

Empty-element tags. Empty-element tags indicate both the
beginning and end of an element in one construct. They look
much like start-tags but include an extra forward slash (/). For
example: <elementName [attributes] />. The empty-element
tag <myElement /> is equivalent to <myElement></myElement>. An
empty-element tag is simply an abbreviation for a start-tag and
end-tag and no content.

TIP

Just like start-tags and end-tags, empty-element tags let you
include whitespace between the element name and the clos-
ing bracket, in this case />. A space between the element
name and the /> is more common in empty-element tags,
probably because this practice avoids problems with older
browsers and is recommended by XHTML.

Elements can contain any other XML component that may
legally appear in a document except the DOCTYPE declara-
tion and its contents. Attributes may appear in start- or
empty-element tags. Elements, text, processing instructions,
comments, entities, and CDATA sections may all appear in
the content of an element, between the start-tag and the end-
tag.

Element nesting. Everything inside an element (except attri-
butes, which are listed in start- or empty-element tags) must
nest cleanly. An element can’t contain another element’s
start-tag without containing its end-tag as well. Also, an ele-
ment can’t contain the start of a comment or CDATA sec-
tion without containing its end. Any structure that begins
inside a given element must end inside that element. For
instance, this is illegal:

<sentence>These are bold, <i>bold italic,, and
italic</i>.</sentence>

The b element contains the start-tag of the i element but not
its end-tag, while the i element contains the end-tag for the b
element but not its start-tag. An XML parser should come to

10 | XML Pocket Reference

a halt when it encounters the without having encoun-
tered an </i> first. To fix this particular problem, you’d need
to restructure the tags like this:

<sentence>These are bold, <i>bold italic,</i><i>,
and italic</i>.</sentence>

Now the first b element cleanly contains an i element, and a
new i element starts right after the b element closes. The struc-
ture is balanced; XML parsers will be able to read it easily.

TIP

If you need overlapping structures, XML probably isn’t
the right tool. You may want to explore LMNL (http://
lmnl.org), an experimental form of markup that allows
overlap. Alternatively, you may choose to work in XML
but define ranges externally with tools such as the W3C’s
incomplete XPointer() scheme.

Structures and relationships. The hierarchical structure of XML
elements lends itself to a lot of metaphors. Family metaphors
and tree metaphors predominate, but sometimes the two get
mixed. Here’s a list of the most common metaphors:

Root or document
The root or document element of any XML document is
the first XML element and contains all of the other XML
elements. The root element doesn’t necessarily contain
the entire document. Things like the XML declaration,
comments, processing instructions, document type dec-
larations, and whitespace can be left outside of it. The
document’s top level is sometimes called the root node
(XPath 1.0) or the document node (XPath 2.0), but this is
different than the root element because it contains not
only the root element, but also the parts of the docu-
ment outside the root element.

XML Structures | 11

Parent
The parent element of any XML component is the ele-
ment that directly contains it. The root element of an
XML document has no parent element, though the docu-
ment root itself is sometimes considered the parent of the
root element.

Ancestor
An ancestor element is any element that contains a given
node, even if there are other elements in between. The
root element is an ancestor element of every element in
an XML document.

Child
A child element is an element directly contained by another
element. Child elements may in turn have children of their
own, though the metaphor isn’t usually extended to grand-
children and beyond. Comments, processing instructions,
CDATA sections, and text nodes may also be considered
children, though they aren’t child elements.

Descendant
A descendant element is any element contained in another
element. All elements are descendants of the root element.

Sibling
A sibling element is a component that shares the same
parent as another component. In <a><c/><d/>,
the b, c, and d elements are all siblings of each other. b is
sometimes called a preceding sibling of c, while d would
be referred to as a following sibling.

Leaf
A leaf element is an element that contains no other ele-
ments, and a leaf node is any component that contains no
other elements, text, or components.

12 | XML Pocket Reference

These metaphors can be very useful for referring to specific
elements within a document. Most of the environments for
processing XML documents are organized based on these
relationships.

Mixed content. Many XML applications, typically data applica-
tions, contain neatly organized fields of data like the following:

<sale>
 <item>
 <sku>033921238</sku>
 <quantity>2</quantity>
 <price>13.42</price>
 </item>
...
</sale>

Elements in these documents are nested in other elements
but are not mixed with text. Elements contain either ele-
ments or text, but never both—unless they contain mixed
content. Mixed content occurs when elements contain both
text and elements, like:

<name><family>Smith</family>, <given>John</given></name>

or:

<para>Today, wonderful things happened in <place>New York
City</place>, where <person>Emperor Jeffrey</person> was
handing out flowers from his limousine.</para>

Mixed content is typically used for document-like applica-
tions, wherein it’s occasionally important to highlight a par-
ticular part of a sentence or paragraph as having a particular
nature. In the preceding example, it may be important for an
application to identify places and people, perhaps for index-
ing purposes. The first example shows how to create a name
element that includes a comma and keeps that comma from
interfering with the structure and parts of the name.

Mixed content is easy to use in documents but can make
some kinds of processing more difficult and create complica-
tions for DTDs and many flavors of schema. Elements can

XML Structures | 13

contain whitespace, processing instructions, comments, and
child elements without being considered to have mixed con-
tent. Nor do CDATA sections mixed with text constitute
mixed content.

See also

§3, §3.1

Attributes
Attributes are name-value pairs that may appear in a start- or
empty-element tag.

Productions
[2] Char ::= #x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-
#xFFFD] | [#x10000-#x10FFFF] 1.0
[2] Char ::= [#x1-#xD7FF] | [#xE000-#xFFFD] | [#x10000-
#x10FFFF] 1.1
[3] S ::= (#x20 | #x9 | #xD | #xA)+
[4] NameChar::= Letter | Digit | '.' | '-' | '_' | ':' |
CombiningChar | Extender 1.0
[4] NameStartChar ::= ":" | [A-Z] | "_" | [a-z] | [#xC0-
#xD6] | [#xD8-#xF6] | [#xF8-#x2FF] | [#x370-#x37D] |
[#x37F-#x1FFF] | [#x200C-#x200D] | [#x2070-#x218F] |
[#x2C00-#x2FEF] | [#x3001-#xD7FF] | [#xF900-#xFDCF] |
[#xFDF0-#xFFFD] | [#x10000-#xEFFFF] 1.1[4a] NameChar ::=
NameStartChar | "-" | "." | [0-9] | #xB7 | [#x0300-#x036F]
| [#x203F-#x2040] 1.1
[5] Name::= (Letter | '_' | ':') (NameChar)* 1.0
[5] Name ::= NameStartChar (NameChar)* 1.1
[10] AttValue ::= '"' ([^<&"] | Reference)* '"' | "'"
([^<&'] | Reference)* "'"
[25] Eq ::= S? '=' S?
[39] element ::= EmptyElemTag | STag content Etag
[40] Stag ::= '<' Name (S Attribute)* S? '>'
[41] Attribute ::= Name Eq AttValue
[44] EmptyElemTag ::= '<' Name (S Attribute)* S? '/>'
[67] Reference ::= EntityRef | CharRef
[68] EntityRef ::= '&' Name ';'
[69] PEReference ::= '%' Name ';'

14 | XML Pocket Reference

Examples
<message xmlns="http://simonstl.com/ns/examples/message"

xml:lang="en" date="20051006" >
 This is a message!
</message>

<photo source="photos/mypic.jpg" description="photo of
moi"/>

Description

In effect, attributes modify an element in some way. They
appear as a list after the name of the element, and each
attribute name in the list must be unique. All of the name-
value pairs must be separated by whitespace. The name of
the attribute is followed by an equals sign (=) and then by a
quoted value. The quotes must be matched pairs of single or
double quotes; in other words, you cannot mix single and
double quotes when specifying a value for an attribute.
Whitespace may appear between the name, equals sign, and
quoted value. The order of attributes is not significant in
XML. If an XML document relies on a DTD for validation
purposes, attributes may have one of ten types: CDATA, ID,
IDREF, IDREFS, ENTITY, ENTITIES, NMTOKEN, NMTOKENS, NOTATION,
and enumeration. If an XML document relies on XML Schema
for validation, the attributes as well as elements may be of any
type offered by XML Schema datatypes. The special attributes
xmlns and xmlns:prefix are not treated as regular attributes in
normal XML processing (see the later section “XML
Namespaces”).

See also

§2.3, §3.1

XML Structures | 15

Text
A sequence of characters, or text, makes up an XML docu-
ment. Text consists of both markup and character data (ele-
ment content).

Productions
[2] Char ::= #x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-
#xFFFD] | [#x10000-#x10FFFF] 1.0
[2] Char ::= [#x1-#xD7FF] | [#xE000-#xFFFD] | [#x10000-
#x10FFFF] 1.1
[2a] RestrictedChar ::= [#x1-#x8] | [#xB-#xC] | [#xE-#x1F]
| [#x7F-#x84] | [#x86-#x9F] 1.1
[3] S ::= (#x20 | #x9 | #xD | #xA)+
[4] NameChar::= Letter | Digit | '.' | '-' | '_' | ':' |
CombiningChar | Extender 1.0
[4] NameStartChar ::= ":" | [A-Z] | "_" | [a-z] | [#xC0-
#xD6] | [#xD8-#xF6] | [#xF8-#x2FF] | [#x370-#x37D] |
[#x37F-#x1FFF] | [#x200C-#x200D] | [#x2070-#x218F] |
[#x2C00-#x2FEF] | [#x3001-#xD7FF] | [#xF900-#xFDCF] |
[#xFDF0-#xFFFD] | [#x10000-#xEFFFF] 1.1
[4a] NameChar ::= NameStartChar | "-" | "." | [0-9] | #xB7
| [#x0300-#x036F] | [#x203F-#x2040] 1.1
[5] Name::= (Letter | '_' | ':') (NameChar)* 1.0
[5] Name ::= NameStartChar (NameChar)* 1.1
[14] CharData ::= [^<&]* - ([^<&]* ']]>' [^<&]*)

Examples
<messages>
 <msg>This element contains a message.</msg>
</messages>

Description

A character in XML is considered an atomic unit of text.
Legal characters include the tab, the carriage return, the line
feed, and the legal characters of Unicode and ISO/IEC
10646. Text classed as markup consists of element start-tags
(including attributes), end-tags, empty-element tags, entity

16 | XML Pocket Reference

and character references, comments, CDATA section delim-
iters, XML declarations, text declarations, processing instruc-
tions, document type declarations, and any whitespace
outside the document element.

All other text—namely, text that shows up inside XML
elements—is element content and is called character data.
Ampersands (&) and less-than signs (<) can’t appear in charac-
ter data, because they look like markup; instead, the pre-
defined XML entity references & and < are used to
represent these characters in character data (see the following
section, “Character, Entity, and Predefined Entity References”).

Whitespace consists of spaces (#x20), tabs (#x9), carriage
returns (#xD), and line feeds (#xA) in XML 1.0; these can
appear in elements and between markup. In addition, XML
1.1 includes next line (#x85) and line separator (#x2028) as
line-end characters. These new characters, however, may not
appear in element content. The line-end characters #xD, #xA,
#x85, and #x2028 (or a sequence of two) must be normalized
to line feeds #xA during parsing.

The characters allowed in names, such as element and attribute
names, are restricted according to the Name productions.

See also

§2.2, §2.3, §2.4, §2.11

Character, Entity, and Predefined Entity
References
Character, entity, and predefined entity references refer respec-
tively to (1) a specific character in the ISO/IEC 10646 or Uni-
code character set (especially one not readily accessible
through the keyboard), (2) a named entity, and (3) any one of
the five predefined XML entities.

XML Structures | 17

Productions
[4] NameChar::= Letter | Digit | '.' | '-' | '_' | ':' |
CombiningChar | Extender 1.0
[4] NameStartChar ::= ":" | [A-Z] | "_" | [a-z] | [#xC0-
#xD6] | [#xD8-#xF6] | [#xF8-#x2FF] | [#x370-#x37D] |
[#x37F-#x1FFF] | [#x200C-#x200D] | [#x2070-#x218F] |
[#x2C00-#x2FEF] | [#x3001-#xD7FF] | [#xF900-#xFDCF] |
[#xFDF0-#xFFFD] | [#x10000-#xEFFFF] 1.1
[4a] NameChar ::= NameStartChar | "-" | "." | [0-9] | #xB7
| [#x0300-#x036F] | [#x203F-#x2040] 1.1
[5] Name::= (Letter | '_' | ':') (NameChar)* 1.0
[5] Name ::= NameStartChar (NameChar)* 1.1
[66] CharRef ::= '&#' [0-9]+ ';' | '&#x' [0-9a-fA-F]+ ';'
[67] Reference ::= EntityRef | CharRef
[68] EntityRef ::= '&' Name ';'

Examples
<para>The ¶ symbol marks the beginning of a
paragraph.</para>

<para>The ¶ symbol marks the beginning of a
paragraph.</para>

<p>© O'Reilly Media, Inc.</p>

<comparison>"a < b > & a=c"
</comparison>

Description

In XML, character and entity references are formed by sur-
rounding a numerical value or name with & and ;, as in
©, ©, or ©.

Character references. You can write character references in dec-
imal or hexadecimal form, though each is written in a slightly
different way. For example, to create a character reference in
decimal for the pilcrow sign (¶), use ¶. In hexadecimal,
use ¶ or ¶ (you can drop leading zeros and use

18 | XML Pocket Reference

upper- or lowercase in hex). The main difference between the
two forms is the x in the hex form and the use of base-10 (deci-
mal) versus base-16 (hexadecimal) numbering systems. (The
hex B6 equals the decimal 182.)

Entity references. An entity reference refers to a named entity
defined in a DTD, or an internal, predefined entity. You are
likely familiar with the entity references in HTML, an applica-
tion of SGML—references such as for a non-breaking
space, which is defined in the HTML entity HTMLlat1.ent
(http://www.w3.org/TR/html401/HTMLlat1.ent). You can learn
more about DTDs and entities in the section “Document Type
Definitions,” later in this book. Several predefined named enti-
ties are available in XML that readily demonstrate how to use
named entities.

Predefined entities. Because XML uses <, >, &, and sometimes
" and ' for markup, and because it’s not always easy to enter
every character Unicode supports using a standard keyboard
or text editor, XML offers some alternative ways to represent
these characters. For the characters used as markup, XML
offers predefined, or built-in, entities, which are references
you can use in place of the characters themselves. These enti-
ties, shown in Table 1, are built into every compliant XML
processor.

Table 1. Predefined entities

Entity Description

& Ampersand (&)

' Apostrophe or single quote (')

> Greater-than symbol (>)

< Less-than symbol (<)

" Double quote (")

XML Structures | 19

Of all of the predefined entities, only < and & are
strictly necessary. You can use quotes (and apostrophes) in
contexts where they don’t confuse the parser—any place
outside of attribute values—and > is only necessary due to
arcane rules involving SGML’s recognition of CDATA sec-
tions: the XML 1.0 and 1.1 specifications bar the sequence
]]> from ever appearing in text. Always use the > entity
reference if a greater-than sign has to follow]]. (It seems to
be good practice to use > everywhere, but this is one case
in which it’s explicitly necessary.)

See also

§4.1, §4.6

Comments
XML comments contain human-readable information and are
formed the same way SGML (and thus HTML) comments are
formed.

Productions
[15] Comment ::= '<!--' ((Char - '-') | ('-' (Char - '-
')))* '-->'

Examples
<!--This is a very simple document.-->

<!--
 This comment is on
 several lines.
-->

Description

Comments begin with <!-- and end with -->. They can con-
tain characters that are illegal in text (character data) such as &
and <; however, they can’t contain the character sequence --
or --->, and they cannot be nested. XML processors generally
ignore comments but may keep track of them. You can place

20 | XML Pocket Reference

comments anywhere in an XML document except inside other
markup, such as within tag brackets. You can also place com-
ments inside document type declarations, where allowed.
Entity references and parameter entity references (such as <
or %data;) are allowed but not recognized or expanded inside
comments.

See also

§2.5

The XML Declaration
Optional XML declarations provide version and encoding
information, as well as information about external markup
declarations.

Productions
[23] XMLDecl ::= '<?xml' VersionInfo EncodingDecl? SDDecl?
S? '?>'
[24] VersionInfo ::= S 'version' Eq ("'" VersionNum "'" |
'"' VersionNum '"')
[25] Eq ::= S? '=' S?
[26] VersionNum ::= '1.0' 1.0
[26] VersionNum ::= '1.1' 1.1
[32] SDDecl ::= S 'standalone' Eq (("'" ('yes' | 'no')
"'") | ('"' ('yes' | 'no') '"'))
[80] EncodingDecl ::= S 'encoding' Eq ('"' EncName '"' |
"'" EncName "'")
[81] EncName ::= [A-Za-z] ([A-Za-z0-9._] | '-')* /*
Encoding name contains only Latin characters */

Examples
<?xml version="1.0" ?>

<?xml version="1.1" encoding="ISO-8859-1"?>

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

XML Structures | 21

Description

The XML declaration is recommended by the XML spec but
is not mandatory. The XML declaration is a human- and
machine-readable flag that states several facts about the con-
tent of the document. If present, it must appear on the first
line of the document. An XML declaration is not a process-
ing instruction, although it looks like one. In general, it pro-
vides three pieces of information about a document: (1) the
XML version information; (2) the character encoding used in
the document; and (3) the standalone document declara-
tion, which states whether or not the document stands
alone—that is, whether or not it relies on markup declara-
tions from an external source (a DTD).

Version information. If you use an XML declaration, it must
include version information (as in version="1.0"). Cur-
rently, XML Version 1.0 enjoys the broadest use. However,
Version 1.1 is also now available (http://www.w3.org/TR/
xml11/) and so is a possible value for version.

The encoding declaration. An optional encoding declaration
(such as encoding="UTF-8") allows you to explicitly state the
character encoding used in the document. Character encoding
refers to the way characters are represented internally, usually
by one or more 8-bit bytes, or octets. If no encoding declara-
tion exists in a document’s XML declaration, that XML docu-
ment is required to use either UTF-8 or UTF-16 encoding. A
UTF-16 document must begin with a special character called a
Byte Order Mark, or BOM (the zero-width, no-break space
U+FEFF; see http://www.unicode.org/charts/PDF/UFE70.pdf). As
values for encoding, you should use names registered at Inter-
net Assigned Numbers Authority (IANA; http://www.iana.org/
assignments/character-sets). In addition to UTF-8 and UTF-16,
US-ASCII, ISO-8859-1, and Shift_JIS are some possible choices.
If you use an encoding that is uncommon, make sure your XML
processor supports the encoding; if it doesn’t, you’ll get an
error.

22 | XML Pocket Reference

The standalone document declaration. An optional standalone
declaration (as in standalone="no") can tell an XML processor
whether or not an XML document depends on external
markup declarations—that is, whether or not it relies on dec-
larations in an external DTD. The standalone document decla-
ration can have a value of yes or no. Don’t worry too much
about standalone declarations, because if you don’t use exter-
nal markup declarations, the standalone declaration has no
meaning anyway, whether its value is yes or no (i.e.,
standalone="yes" or standalone="no"). On the other hand, if
you use external markup declarations but do not have a stand-
alone document declaration, the value no is assumed. Given
these loopholes, there isn’t much real need for standalone dec-
larations (other than acting as a visual cue) unless your proces-
sor can convert an XML document from one that does not
stand alone to one that does, which may be more efficient in a
networked environment.

See also

§2.9, §4.3.3

Processing Instructions
A processing instruction is a structure in an XML document
that contains an instruction to an application.

Productions
[16] PI ::= '<?' PITarget (S (Char* - (Char* '?>'
Char*)))? '?>'
[17] PITarget ::= Name - (('X' | 'x') ('M' | 'm') ('L' |
'l'))

Examples
<?xml-stylesheet href="mine.css" type="text/css" ?>

<?mso-application progid="Excel.Sheet" ?>

XML Structures | 23

Description

Processing instructions, or PIs, can appear anywhere an ele-
ment can appear (although the XML stylesheet PI must appear
at the beginning, or prolog, of an XML document). Any PI
must appear after the XML declaration, if one is present. A PI is
bounded by the characters <? and ?>. The term immediately
following <? is called the target. A target identifies the purpose
or the name of the PI.

The XML stylesheet processing instruction is just one example
of a common PI. Other examples include PIs you might find
being used in DocBook (e.g., <?hard-pagebreak?>), Microsoft
Word (<?mso-application progid="Word.Document” ?>), or
Microsoft Excel (<?mso-application progid="Excel.Sheet” ?>).
The purpose of the XML stylesheet PI is to associate a stylesheet
with an XML document. The semantics of the XML stylesheet
PI are like those of the HTML or XHTML link element. The
structures href and type are called pseudo-attributes. The PI
actually has six pseudo-attributes, but, to be brief, we’ll only
discuss href and type here (others are title, media, charset, and
alternate). In the first example, href identifies a relative URI
(Uniform Resource Identifier) for the stylesheet mine.css, and
type defines a media type for the stylesheet, namely text/css.

See also

§2.6

XML stylesheet processing instruction spec: http://www.w3.org/
TR/xml-stylesheet

text/css media type RFC: http://www.ietf.org/rfc/rfc2318.txt

24 | XML Pocket Reference

CDATA Sections
CDATA sections are used to escape text that contains char-
acters that would otherwise be recognized as markup.

Productions
[18] CDSect ::= CDStart CData CDEnd
[19] CDStart ::= '<![CDATA['
[20] Cdata ::= (Char* - (Char* ']]>' Char*))
[21] CDEnd ::= ']]>'

Examples
<markup><![CDATA[< and & are characters used in markup]]>
</markup>

<company><![CDATA[Simon & Associates]]></company>

Description

A CDATA section begins with the characters <![CDATA[and
ends with]]>. CDATA sections in XML allow you to hide
characters like < and & from an XML processor. These char-
acters have special meaning in markup; < begins an element
tag and & begins a character reference or entity reference.

When processed, the & character in the CDATA section is
hidden from the processor so that it isn’t interpreted as
markup, as the start of an entity or character reference would
be. As with comments, CDATA sections cannot be nested. A
CDATA section must not contain]]>.

See also

§2.7

The DOCTYPE Declaration
A document type declaration contains internal markup dec-
larations or points to external markup declarations that pro-
vide a grammar for validating a given document or class of
documents.

XML Structures | 25

Productions
[28] doctypedecl ::= '<!DOCTYPE' S Name (S ExternalID)? S?
('[' intSubset ']' S?)? '>'
[28a] DeclSep ::= PEReference | S
[28b] intSubset ::= (markupdecl | DeclSep)*
[29] markupdecl ::= elementdecl | AttlistDecl | EntityDecl
| NotationDecl | PI | Comment

Examples
<!DOCTYPE message SYSTEM "myMessage.dtd" >

<!DOCTYPE message SYSTEM "http://www.example.com/DTD/
myMessage.dtd" >

<!DOCTYPE html PUBLIC "-//W3C/DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd" >

<!DOCTYPE message [
 <!ELEMENT message (#PCDATA) >
 <!ATTLIST message date CDATA #REQUIRED >
]>

<!DOCTYPE message SYSTEM "myMessage.dtd" [
 <!ATTLIST message info CDATA #IMPLIED >
]>

Description

A document type or DOCTYPE declaration provides informa-
tion to a validating XML parser about how to validate an
XML document. The DOCTYPE keyword appears first; then the
document, or root, element of the document being validated
is identified, followed by either a SYSTEM or PUBLIC identifier.

SYSTEM indicates that the DTD will be found as indicated in the
filename or URI that follows (also called a system literal; for
example, "myMessage.dtd" or "http://www.example.com/DTD/
myMessage.dtd”).

PUBLIC hints that the DTD is standard, well known, and widely
available—although technically, it just means that a public
identifier is being used. This identifier is followed by a public

26 | XML Pocket Reference

ID literal (e.g., "-//W3C/DTD XHTML 1.0 Strict//EN"), then by a
system literal. If it is registered, a public ID literal is preceded
by a + character; if it is not, by a – character. Following that
are two slashes (//), and then the DTD owner is given (for
example, W3C). Next comes a slash (/), followed by a descrip-
tion (for example, DTD XHTML 1.0 Strict), followed by another
two slashes (//), and finally a language token (EN).

A document type declaration may also contain an internal sub-
set DTD, which does not include SYSTEM or PUBLIC, but encloses
DTD markup declarations in square brackets. Markup declara-
tions define the elements, attributes, entities, and notations
that may exist in a valid document of the given class.

Document type declarations that do not contain an internal
subset point to an external subset; however, internal and
external subsets may be used together, in essence combining
the declarations of both. If both are used, the declarations in
the internal subset in effect occur before those in the external
subset. In such a case, matching attribute-list and entity dec-
larations in an internal subset take precedence over those in
an associated external subset. Element declarations for the
same names appearing in both subsets are not allowed if the
subsets are used together.

See also

§2.8

“Document Type Definitions,” later in this book

The xml:space Attribute
The special attribute xml:space indicates that whitespace
should be preserved as specified in element content.

XML Structures | 27

Example
<message xmlns="http://simonstl.com/ns/examples/message"

xml:space="preserve" lang="en" date="20051006" >
 THIS
 IS A
 MESSAGE!
</message>

Description

XML processors must always pass all characters that aren’t
markup through to an application. When xml:space is used
on an element with a value of preserve, the whitespace in
that element’s content must be preserved as is by the applica-
tion that processes it. The whitespace is always passed on to
the processing application, but xml:space provides the appli-
cation with a hint regarding how to process it. Another legal
value for xml:space is default, which indicates that default
whitespace processing by the application is acceptable (this is
the default behavior in absence of the xml:space attribute).
The attribute and its value also apply to child elements.

TIP

A validating XML processor must also report whitespace in
element-only content (that is, the whitespace between tags
in an element that can contain only elements, not charac-
ter data).

See also

§2.10

The xml:lang Attribute
The xml:lang attribute is a special language identification
attribute in XML that identifies the natural or formal lan-
guage in which the content of the XML document is written.

28 | XML Pocket Reference

Example
<message xmlns="http://simonstl.com/ns/examples/message"

xml:lang="en" date="20051006" >

Description

The value en (English) is a language identifier defined by
RFC 3066 and ISO 639. Other examples include two-letter
language identifiers, such as de (German), fr (French), and
es (Spanish); two-letter identifiers with country identifica-
tion subtags, such as fr-CA (French used in Canada); and
three-letter language identifiers, such as eng (English), ger or
deu (German), fre or fra (French), and spa (Spanish).

See also

§2.12

RFC 3066: http://www.ietf.org/rfc/rfc3066.txt

ISO 639: search at http://www.iso.ch for the latest information

The xml:id Attribute
The xml:id attribute is a method for guaranteeing proper ID
processing.

Example
<message xml:id="i-35867">This is a message</message>

Description

Under XML 1.0, an ID is a unique identifier to aid in process-
ing. You can annotate an element uniquely with an attribute
of type ID, as in id="i-35867" (IDs can’t start with a num-
ber), which often assumes an associated DTD containing the
attribute-list declaration <!ATTLIST message id ID #REQUIRED>.
Likewise, XML Schema provides a mechanism for identifying
markup as having type ID with the type="xs:ID" attribute, as
with <xs:attribute name="id" type="xs:ID">. The problem is
that non-validating yet conformant XML processors are not

XML Structures | 29

required to refer to or process an external subset DTD (one
that exists outside of the XML document), and a correct
schema may not be available, so processing IDs can be trou-
blesome. Implementation of the xml:id attribute is an
attempt to guarantee that ID processing will be consistent
and reliable, whether the XML processor being used is vali-
dating or not. The xml:id mechanism is currently a W3C candi-
date recommendation, and it’s a development worth tracking.
The upcoming specs for XPath 2.0—and hence XQuery and
XSLT 2.0—also support xml:id.

See also

The xml:id spec: http://www.w3.org/TR/xml-id/

XML Namespaces
Namespaces provide a way to disambiguate names in XML
documents, thus helping avoid a collision of names when mul-
tiple vocabularies are combined.

Examples

Default namespace declaration

<message xmlns="http://simonstl.com/ns/examples/message"
 xml:lang="en" date="20051006" >
 This is a message!
</message>

Qualified or prefixed namespace declaration

<msg:message xmlns:msg="http://simonstl.com/ns/examples/
message" xml:lang="en" date="20051006" >
 This is a message!
</msg:message>

Description

The special xmlns attribute, or xmlns with a prefix (for exam-
ple, xmlns:xsl), specifies a namespace declaration.

30 | XML Pocket Reference

TIP

Namespaces can be confusing because they can use any
URI as a namespace name. The scheme or protocol name
http:// suggests that the URI identifies a resource that can
be retrieved just like any other web resource using Hyper-
text Transfer Protocol. But this is not the case. The URI is
considered simply a name and is not a guarantee of the lo-
cation or existence of a resource. URIs are allocated locally,
so you don’t have to deal with a global registry in order to
use them; however, the downside of this is you can’t really
police people who might use a domain name you own as
part of their URI.

Without a prefix, the xmlns attribute and its value (such as http:
//simonstl.com/ns/examples/message) are considered a default
namespace declaration. A default namespace declaration associ-
ates a namespace name—a URI—with one or more elements;
however, a default namespace declaration never associates a
namespace with attributes, even though those attributes may be
used on elements within the default namespace. Attributes with-
out a prefix are not considered part of any namespace (see
“Qualified names or names with prefixes,” later in this section).
A local name together with its namespace name is called an
expanded name and is often shown in descriptive text as {http://
simonstl.com/ns/examples/message}message, though it is never
represented this way in XML.

The default declaration associates the namespace name with
an element and its children. A default namespace declara-
tion applies only to the element where it is declared and to
any of its child or descendent elements. A default declara-
tion on the document element therefore applies to elements
in the entire document. Again, it does not apply to attributes.

Qualified names or names with prefixes. In a prefixed declara-
tion, the prefix (such as msg) is associated with the namespace
name, thus making the name a qualified name. If you want to
apply a namespace to an attribute, you must use a prefix in

XML Structures | 31

its name, which means any element or attribute in the docu-
ment that is prefixed will be associated with that namespace,
provided a matching namespace declaration is reachable.
Once again, an attribute that does not have a prefix is never
associated with any namespace. The only way you can associ-
ate an attribute with a namespace is with a prefix. Default
namespace declarations never apply to attributes.

XML Linking Language, or XLink (http://www.w3.org/tr/xlink/),
is implemented exclusively with qualified or prefixed attribute
names; it uses no elements. The namespace is declared with
xmlns:xlink="http://www.w3.org/1999/xlink". (xlink: is the
conventional prefix, but it is not required.) Qualified attribute
names in XLink include xlink:href, xlink:type, xlink:title,
and xlink:show, among others. (Though XLink became a
W3C recommendation in 2001, it does not enjoy widespread
use or popularity; hence it is not discussed further in this
pocket reference.)

The xml: and xmlns: prefixes. The special namespace prefix xml
is bound to the namespace URI http://www.w3.org/XML/
1998/namespace and is used with attributes such as xml:lang,
xml:space, and xml:id. Because it is built in, it doesn’t have
to be declared, but you may choose to declare it. However,
you are not allowed to bind xml to any namespace name other
than http://www.w3.org/XML/1998/namespace, and you can’t
bind any other prefix to the name http://www.w3.org/XML/
1998/namespace.

xmlns is a special attribute and also can be used as a prefix.
As the result of an erratum, the prefix xmlns was bound to
the namespace name http://www.w3.org/2000/xmlns/. Unlike
the prefix xml:, xmlns cannot be declared, and no other pre-
fix may be bound to http://www.w3.org/2000/xmlns/.

Undeclaring namespaces with Version 1.1. A new spec was cre-
ated for use only with XML 1.1 namespaces. Notably, this spec
allows you to undeclare a previously declared namespace—that

32 | XML Pocket Reference

is, with xmlns="" you can undeclare a default namespace decla-
ration, and with xmlns:msg="" you can undeclare a namespace
associated with the prefix msg. In Version 1.0 of the namespaces
spec, a default namespace may be empty (as in xmlns=""), but
you cannot undeclare a namespace as you can in Version 1.1.

See also

XML namespaces 1.0 spec: http://www.w3.org/TR/REC-xml-
names

XML namespaces 1.0 errata: http://www.w3.org/XML/xml-
names-19990114-errata

XML namespaces 1.1 spec: http://www.w3.org/TR/xml-names11

URI RFC: http://www.ietf.org/rfc/rfc2396.txt

Document Type Definitions
A document type definition, or DTD, defines the structure or
content model of a valid XML instance.

Productions
[45] elementdecl ::= '<!ELEMENT' S Name S contentspec S? '>'
[46] contentspec ::= 'EMPTY' | 'ANY' | Mixed | children
[47] children ::= (choice | seq) ('?' | '*' | '+')?
[48] cp ::= (Name | choice | seq) ('?' | '*' | '+')?
[49] choice ::= '(' S? cp (S? '|' S? cp)+ S? ')'
[50] seq ::= '(' S? cp (S? ',' S? cp)* S? ')'
[51] Mixed ::= '(' S? '#PCDATA' (S? '|' S? Name)* S? ')*'
| '(' S? '#PCDATA' S? ')'
[52] AttlistDecl ::= '<!ATTLIST' S Name AttDef* S? '>'
[53] AttDef ::= S Name S AttType S DefaultDecl
[54] AttType ::= StringType | TokenizedType |
EnumeratedType
[55] StringType ::= 'CDATA'
[56] TokenizedType ::= 'ID'| 'IDREF' | 'IDREFS' | 'ENTITY'
| 'ENTITIES' | 'NMTOKEN' | 'NMTOKENS'
[57] EnumeratedType ::= NotationType | Enumeration
[58] NotationType ::= 'NOTATION' S '(' S? Name (S? '|' S?
Name)* S? ')'

Document Type Definitions | 33

[59] Enumeration ::= '(' S? Nmtoken (S? '|' S? Nmtoken)*
S? ')'
[60] DefaultDecl ::= '#REQUIRED' | '#IMPLIED' | (('#FIXED'
S)? AttValue)
[61] conditionalSect ::= includeSect | ignoreSect
[62] includeSect ::= '<![' S? 'INCLUDE' S? '['
extSubsetDecl ']]>'
[63] ignoreSect ::= '<![' S? 'IGNORE' S? '['
ignoreSectContents* ']]>'
[64] ignoreSectContents ::= Ignore ('<!['
ignoreSectContents ']]>' Ignore)*
[65].Ignore ::= Char* - (Char* ('<![' | ']]>') Char*)

Examples
<!ELEMENT message (#PCDATA)>
<!ATTLIST message date CDATA #REQUIRED>

<?xml version="1.0" encoding="UTF-8" ?>
<?xml-stylesheet href="mine.css" type="text/css" ?>
<!--This is a very simple document.-->
<!DOCTYPE message [
 <!ELEMENT message (#PCDATA)>
 <!ATTLIST message date CDATA #REQUIRED>
]>
<message xmlns="http://simonstl.com/ns/examples/message"
 xml:lang="eng" date="20051006" >
 This is a message!
</message>

Description

XML inherited the DTD from SGML. The DTD is the native,
grammar-based language for validating the structure of XML
documents—though markup declarations are not specified
in XML syntax—and is interwoven into the XML 1.0 and 1.1
specifications. A DTD can define elements, attributes, enti-
ties, and notations, and can contain comments (just like XML
comments), conditional sections, and a structure unique to
DTDs called parameter entities. DTDs can be internal or
external to an XML document, or both. These concepts are
discussed in the following subsections.

34 | XML Pocket Reference

External subset. The document in Example 2 references an
external DTD, order.dtd, with a document type declaration.
This external DTD is also called an external subset.

The XML declaration on line 1 of Example 2 declares that
external.xml does not stand alone. That’s because on line 2,
the document references the DTD order.dtd. The file order.dtd
is considered an external entity and is called an external
subset. The SYSTEM keyword on line 2 indicates that the DTD
will be identified by a system identifier, which, for all practical
purposes, is a URI for a local or remote file available over a
network.

In the DTD order.dtd (shown in Example 3), all the valid
structures found in external.xml are declared. The docu-
ment, or root, element is order (line 3 of Example 3), which
contains child elements that describe a purchase order.

Example 2. external.xml

1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
2 <!DOCTYPE order SYSTEM "order.dtd">
3
4 <order id="TDI-983857">
5 <store>Prineville</store>
6 <product>feed-grade whole oats</product>
7 <package>sack</package>
8 <weight std="lbs.">50</weight>
9 <quantity>23</quantity>

10 <price cur="USD">
11 <high>5.99</high>
12 <regular>4.99</regular>
13 <discount>3.99</discount>
14 </price>
15 <ship>the back of Tom's pickup</ship>
16 </order>

Document Type Definitions | 35

The text declaration. Line 1 of Example 3 shows a text decla-
ration (see §4.3.1). It is similar to an XML declaration except
that: (1) version information (like version="1.0") is optional;
(2) encoding declarations (such as encoding="UTF-8") are
required; and (3) there are no standalone declarations (it
never uses standalone).

Element type declarations and content models. Most of the lines
in order.dtd contain element type declarations (see §3.2), one
of several kinds of markup declarations (see §2.8) that may
appear in a DTD. The simplest kinds have content models
for parsed character data (#PCDATA), which means that these
elements must contain only text—no element children. The
elements declared on lines 3 and 14 of Example 3, order and
price, have content models that include only child elements.

Example 3. order.dtd

1 <?xml encoding="UTF-8"?>
2 <!-- Order DTD -->
3 <!ELEMENT order

(store+,product,package?,weight?,quantity,price,ship*)>
4 <!-- id = part number -->
5 <!ATTLIST order id ID #REQUIRED
6 xmlns CDATA #FIXED "http://www.wyeast.net/order"
7 date CDATA #IMPLIED>
8 <!ELEMENT store (#PCDATA)>
9 <!ELEMENT product (#PCDATA)>

10 <!ELEMENT package (#PCDATA)>
11 <!ELEMENT weight (#PCDATA)>
12 <!ATTLIST weight std NMTOKEN #REQUIRED>
13 <!ELEMENT quantity (#PCDATA)>
14 <!ELEMENT price (high?,regular,discount?,total?)>
15 <!ATTLIST price cur (USD|CAD|AUD|EUR) "USD">
16 <!ELEMENT high (#PCDATA)>
17 <!ELEMENT regular (#PCDATA)>
18 <!ELEMENT discount (#PCDATA)>
19 <!ELEMENT ship (#PCDATA)>

36 | XML Pocket Reference

The +, ?, and * symbols denote occurrence constraints,
meaning that the child elements may occur only a given
number of times, as follows:

+ The element may occur one or more times

? The element may occur zero or one time (that is, it’s
optional)

* The element may occur zero or more times

If there is no occurrence constraint (i.e., the name is fol-
lowed only by a comma for sequence or | for a choice), the
element may appear once and only once. For a discussion on
the choice operator (|), see “Mixed-content declarations,”
later in this section.

Attribute-list declarations. The DTD order.dtd has three
attribute-list declarations—on lines 5, 12, and 15. (You can
declare one or more attributes at a time, hence the phrase
attribute list.) The first declares three attributes, id, xmlns,
and date. (Although most XML processors treat namespaces
specially, DTDs treat namespace declarations—e.g., xmlns—
just like attributes; thus namespaces must be declared.) XML
attributes declared in DTDs must have one of ten possible
types: CDATA, ID, IDREF, IDREFS, ENTITY, ENTITIES, NMTOKEN,
NMTOKENS, NOTATION, and enumeration (see §3.3.1 for an expla-
nation of all the attribute types).

The attribute id on line 5 is of type ID, which must be a legal
XML name and must be unique. It is also required
(#REQUIRED)—that is, it must appear in any valid instance of
the DTD.

On line 7, the attribute date is declared. The #IMPLIED key-
word means the attribute may or may not appear in a legal
instance. CDATA means that the value of date will be a string.

Document Type Definitions | 37

The std attribute for the weight element is declared on line 12.
It is required (#REQUIRED) and is of type NMTOKEN. A name token
is a single, atomic unit—a string with no whitespace. The
attribute-list declaration on line 15 declares the cur (currency)
attribute for the price element. It has an enumerated type. The
default value in quotes is USD (United States dollar), with possi-
ble values USD, CAD (Canadian dollar), AUD (Australian dollar),
and EUR (Euro). During validation, the processor supplies
default values if no values are present in the instance.

Emulating namespace support in DTDs

DTDs do not directly support XML namespaces, but you
can use a few tricks to emulate namespace support. The
attribute xmlns (line 6 of Example 3) has a fixed value of
http://www.wyeast.net/order. The #FIXED keyword means
that the attribute must always have the provided default
value. When an instance of this DTD is processed with a
validating processor, it will contain the namespace declara-
tion xmlns="http://www.wyeast.net/order". That is, the
namespace declaration will be supplied by the processor if it
is not present in the instance. If you want to use prefixed
elements, you could, for example, change line 6 to read:
xmlns:order CDATA #FIXED "http://www.wyeast.net/order".
Then add the prefix order: to all the element declarations in
the DTD; for example, <!ELEMENT store (#PCDATA)> becomes
<!ELEMENT order:store (#PCDATA)>, and so forth. You will
want to use defaulted attributes in namespace declarations
only when you are certain your instances will use the default
namespace name or URI.

Internal subset

You can also have a DTD that is internal to an XML docu-
ment; this is called the internal subset. internal.xml is an exam-
ple of an XML document that contains an internal subset (see

38 | XML Pocket Reference

Example 4). The DTD is stored in the document type decla-
ration, which encloses markup declarations in square brack-
ets ([]).

Example 4. internal.xml

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <!DOCTYPE order [
3 <!-- Order DTD -->
4 <!ELEMENT order

(store+,product,package?,weight?,quantity,price,ship*)>
5 <!-- id = part number -->
6 <!ATTLIST order id ID #REQUIRED
7 xmlns CDATA #FIXED "http://www.wyeast.net/order"
8 date CDATA #IMPLIED>
9 <!ELEMENT store (#PCDATA)>

10 <!ELEMENT product (#PCDATA)>
11 <!ELEMENT package (#PCDATA)>
12 <!ELEMENT weight (#PCDATA)>
13 <!ATTLIST weight std NMTOKEN #REQUIRED>
14 <!ELEMENT quantity (#PCDATA)>
15 <!ELEMENT price (high?,regular,discount?,total?)>
16 <!ATTLIST price cur (USD|CAD|AUD|EUR) "USD">
17 <!ELEMENT high (#PCDATA)>
18 <!ELEMENT regular (#PCDATA)>
19 <!ELEMENT discount (#PCDATA)>
20 <!ELEMENT ship (#PCDATA)>
21]>
22
23 <order id="TDI-983857">
24 <store>Prineville</store>
25 <product>feed-grade whole oats</product>
26 <package>sack</package>
27 <weight std="lbs.">50</weight>
28 <quantity>23</quantity>
29 <price cur="USD">
30 <high>5.99</high>
31 <regular>4.99</regular>
32 <discount>3.99</discount>
33 </price>
34 <ship>the back of Tom's pickup</ship>
35 </order>

Document Type Definitions | 39

On line 1, the document internal.xml is declared stand-
alone—that is, it does not depend on markup declarations in
an external entity. Notice that there is no SYSTEM keyword or
system identifier or system literal. This is because the
markup declarations are enclosed in the document type dec-
laration rather than in an external entity. The document type
declaration (lines 2 through 21) contains the same declara-
tions as order.dtd, and the document itself (lines 23 through
35) is the same as external.xml, except for the DOCTYPE. Inter-
nal subsets may not contain conditional sections (see “Con-
ditional sections in DTDs,” later in this book). Parameter
entity references may not occur in markup declarations in
internal subsets, though they may appear where markup dec-
larations may occur (see “Parameter entities,” later in this
book).

Using internal and external subsets together

The document both.xml, shown in Example 5, uses both an
internal subset and an external subset (both.dtd in Example 6).
Notice how the document type declaration uses both the
SYSTEM keyword and a system literal ("both.dtd"), and also
encloses markup declarations in square brackets ([]). The
advantage of this technique is that DTDs can be developed
and used in a modular fashion, and documents can be vali-
dated with these modules whether they exist locally or in other
locations (i.e., across the Internet).

Example 5. both.xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE order SYSTEM "both.dtd" [
<!-- Order DTD -->
<!ELEMENT order
(store+,product,package?,weight?,quantity,price,ship*)>
<!-- id = part number -->
<!ATTLIST order id ID #REQUIRED
 xmlns CDATA #FIXED "http://www.wyeast.net/
 order"
 date CDATA #IMPLIED>

40 | XML Pocket Reference

If an external subset and an internal subset are used together,
entity and attribute-list declarations in the internal subset
will take precedence over those with the same names in the
external subset (see §2.8). Element declarations with the
same names may not be duplicated in both subsets, so no
precedence rule applies to element declarations.

<!ELEMENT store (#PCDATA)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT package (#PCDATA)>
<!ELEMENT weight (#PCDATA)>
<!ATTLIST weight std NMTOKEN #REQUIRED>
<!ELEMENT quantity (#PCDATA)>
<!ELEMENT ship (#PCDATA)>
]>

<order id="TDI-983857">
 <store>Prineville</store>
 <product>feed-grade whole oats</product>
 <package>sack</package>
 <weight std="lbs.">50</weight>
 <quantity>23</quantity>
 <price cur="USD">
 <high>5.99</high>
 <regular>4.99</regular>
 <discount>3.99</discount>
 </price>
 <ship>the back of Tom's pickup</ship>
</order>

Example 6. both.dtd

<!ELEMENT price (high?,regular,discount?,total?)>
<!ATTLIST price cur (USD|CAD|AUD|EUR) "USD">
<!ELEMENT high (#PCDATA)>
<!ELEMENT regular (#PCDATA)>
<!ELEMENT discount (#PCDATA)>

Example 5. both.xml (continued)

Document Type Definitions | 41

Parsed entities

Parsed entities provide a means to define replacement text that
may be referenced. This is somewhat like an abbreviation that
is replaced with the full text of its definition wherever a refer-
ence to it appears. Parsed entities may be internal or external.
An internal parsed entity declares its replacement text inline as
a literal string; an external parsed entity declares its replace-
ment text in an external resource or file.

Following are three examples of internal parsed entities.
Here are the declarations, which may appear in either an
internal or external subset:

<!ENTITY date "Thursday, September 1, 2005">
<!ENTITY time "9:00 a.m.">
<!ENTITY nbsp " ">

The first two entities define simple strings. The third entity
shows a common use: associating a name (nbsp) with a char-
acter reference—in this case, a non-breaking space ().

Now here are some similar examples of external parsed enti-
ties. These declarations, which may also appear in either
internal or external subsets, refer to external files (the file
extension .ent is commonly used for external entities but is
not required):

<!ENTITY date SYSTEM "date.ent">
<!ENTITY time SYSTEM "time.ent">

Here is the content of date.ent:

<?xml encoding="UTF-8"?>Monday, September 5, 2005

And here is the content of time.ent:

10:00 a.m.

The external entity date.ent begins with an optional text dec-
laration, which is similar to an XML declaration and is like-
wise recommended but not required. Version information (as
in version="1.0") is not required in a text declaration as it is
in an XML declaration, but the encoding declaration (such as

42 | XML Pocket Reference

encoding="UTF-8") is required here (though it is not required
in an XML declaration). time.ent does not use a text declara-
tion; in such cases, an encoding of UTF-8 or UTF-16 is
assumed.

Here is another example of external parsed entities. Such
entities are commonly used to reference the chapters of a
book, as shown in Example 7.

book.xml contains an internal subset with declarations that
validate elements and attributes that exist both within it and
in the external parsed entities that it references. The book ele-
ment has as content a series of references to external parsed
entities. When processed, these references will be expanded
and replaced by the files they refer to.

External parsed entities could appear on the Web and be
accessed by a declaration such as this one:

<!ENTITY date SYSTEM "http://simonstl.com/ents/date.ent" >

Also, a parsed entity could have a PUBLIC identifier:

<!ENTITY time PUBLIC "-//SimonWorks/External Parsed
Entities 1.2//EN" "http://simonstl.com/ents/time.ent">

Example 7. book.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE book [
<!ELEMENT book (chapter*)>
<!ATTLIST book title CDATA #REQUIRED>
<!ELEMENT chapter (title,para+)>
<!ATTLIST chapter number CDATA #REQUIRED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT para (#PCDATA)>
<!ENTITY ch01 SYSTEM "chapter01.xml">
<!ENTITY ch02 SYSTEM "chapter02.xml">
<!ENTITY ch03 SYSTEM "chapter03.xml">
<!ENTITY ch04 SYSTEM "chapter04.xml">
<!ENTITY ch05 SYSTEM "chapter05.xml">
]>
<book title="Simon's Musings">&ch01;&ch02;&ch03;&ch04;&ch05;
</book>

Document Type Definitions | 43

Finally, here is an example of XML content that references
the date and time entities (references to either the internal or
external parsed entities cited earlier are identical):

<para>The next session will be held on &date; at &time;
sharp.</para>

When an XML processor expands these entity references, the
replacement text is inserted in place of the references. Fol-
lowing is expanded text from the internal entities:

<para>The next session will be held on Thursday, September
1, 2005 at 9:00 a.m. sharp.</para>

Parameter entities

A parameter entity, or PE, is a special entity that can be used
only in a DTD. These entities are not allowed in XML docu-
ments. A PE provides a way to store information and then
reuse that information elsewhere in a DTD multiple times. A
good example of this is the way the XHTML 1.0 strict DTD
defines a set of core attributes. Here is a fragment from the
DTD that defines a PE:

1 <!-- core attributes common to most elements
2 id document-wide unique id
3 class space separated list of classes
4 style associated style info
5 title advisory title/amplification
6 -->
7 <!ENTITY % coreattrs
8 "id ID #IMPLIED
9 class CDATA #IMPLIED

10 style %StyleSheet; #IMPLIED
11 title %Text; #IMPLIED"
12 >

Lines 1 through 6 of this fragment contain a comment explain-
ing the purpose for four attributes: id, class, style, and title.
Starting on line 7, a parameter entity is declared. The percent
sign (%) is a flag to the XML processor indicating a parameter
entity. The name of the parameter entity is coreattrs. The
information in double quotes makes up part of an attribute-list
declaration, which is reused elsewhere in the DTD.

44 | XML Pocket Reference

Whereas normal entity references begin with an ampersand
(&), parameter entity references begin with a percent sign (%).
Lines 10 and 11 show the parameter entity references
%Stylesheet; and %Text;, which are defined elsewhere in the
DTD as follows:

<!ENTITY % StyleSheet "CDATA">
 <!-- style sheet data -->

<!ENTITY % Text "CDATA">
 <!-- used for titles etc. -->

%Stylesheet; and %Text; expand to CDATA. As you can see, a
parameter entity can contain a reference to another parameter
entity. In fact, the attrs parameter entity in xhtml1-strict.dtd
references coreattrs and two other parameter entities:

<!ENTITY % attrs "%coreattrs; %i18n; %events;">

attrs, in turn, is used over 60 times in the DTD, so you can
see how handy parameter entities are for reusing informa-
tion in a DTD. One reminder: parameter entity references
may not occur inside of markup declarations in internal sub-
set DTDs, though they may occur where markup declara-
tions are permitted in internal subsets.

Other things that can go in a DTD

This section briefly covers several other things you can
include in DTDs: comments, conditional sections, unparsed
entities, and notations.

Comments in DTDs. DTDs can contain XML-style comments.
For example, in Example 3 earlier, a pair of comments that
are formed just as they would be in an XML document are
used on lines 2 and 4. (For more details, see the “Com-
ments” section, earlier in this book.)

Document Type Definitions | 45

Conditional sections in DTDs. Conditional sections allow you to
include or exclude declarations in a DTD conditionally. This
feature can help you develop a DTD while you are still try-
ing out different content models. Look at this fragment:

<![INCLUDE[
<!ATTLIST price cur (USD|CAD|AUD|EUR) "USD">
]]>
<![IGNORE[
<!ATTLIST price cur (USD|EUR) "USD">
]]>

The structure that starts with the word INCLUDE indicates that
the following declaration (which must be complete) is to be
included in the DTD at validation time. The section marked
IGNORE, however, is to be ignored.

Mixed-content declarations. Mixed content may contain char-
acter data optionally interspersed with child elements. The
order and number of occurrences of child elements is not con-
strained. An example of a mixed-content declaration follows:

"<!ELEMENT para (#PCDATA | bold | italic)*>

This declaration uses the choice operator | and #PCDATA to
indicate the presence of character data. It allows para ele-
ments to contain bold and/or italic child elements, mixed in
with text or character data. An element name must not
appear more than once in a single mixed-content declaration.

Unparsed entities and notations in DTDs. An unparsed entity is a
resource upon which XML places no constraints. It can con-
sist of a chunk of XML, non-XML text, a graphical file, a
binary file, or any other electronic resource. Unparsed enti-
ties have a name that is associated with a system identifier or
a public identifier. Unparsed entities are used in conjunction
with notations. Notation declared in a DTD provides a name
for a notation, which can allow an application to locate
another helper application capable of processing data in the
given notation. Notations are intended for use in entity and
attribute-list declarations and in attribute specifications.

46 | XML Pocket Reference

For example, in DocBook, a module of a DTD (dbnotnx.mod)
is dedicated to notations. Here is a notation from that module
that associates the name GIF89a with the public identifier -//
CompuServe//NOTATION Graphics Interchange Format 89a//EN:

<!NOTATION GIF89a PUBLIC "-//CompuServe//NOTATION Graphics
Interchange Format 89a//EN">

Here is another example from the same module that uses a
system identifier for the name PNG:

<!NOTATION PNG SYSTEM "http://www.w3.org/TR/REC-png">

Elsewhere, in another DTD that includes this module, you
could declare several entities, like this:

<!ENTITY dbnotnx SYSTEM "dbnotnx.mod">
&dbnotnx;
...
<!ENTITY g001 SYSTEM "g001.gif" NDATA GIF89a>
<!ENTITY g002 SYSTEM "g002.png" NDATA PNG>
...
<!ELEMENT graphic EMPTY>
<!ATTLIST graphic img ENTITY #REQUIRED>

The entity declarations associate names with files and with
the names from notations. The NDATA keyword indicates an
unparsed entity. In one type of instance, you could refer to
the entity in an attribute, like this:

<graphic img="g001"/>
...
<graphic img="g002"/>

TIP

The syntax for notations is the most awkward and forbid-
ding of any syntax in XML, so you probably won’t be sur-
prised to learn that the use of unparsed entities is rare and
that the applications that support them are even more
rare. When people want to display graphics, they usually
transform their XML into HTML or XHTML, where they
can use the tried-and-true img tag.

W3C XML Schema | 47

See also

§2.8, §3.2, §3.3.1, §4.3.1

XHTML 1.0 strict DTD: http://www.w3.org/TR/xhtml1/DTD/
xhtml1-strict.dtd

W3C XML Schema
XML Schema, sometimes abbreviated XSD or referred to as
W3C XML Schema (WXS), is an XML vocabulary that
enables you to describe other XML vocabularies so that pro-
grams can test whether a given document meets rules laid
down in the schema. XML Schema is defined by a set of
three W3C Recommendations:

XML Schema Part 0: Primer
A tutorial for XML Schema that explains Parts 1 and 2 in
less detail and with more examples and integration;
available at http://www.w3.org/TR/xmlschema-0/

XML Schema Part 1: Structures
An XML vocabulary for describing the structures of XML
vocabularies; based on a mixture of markup and object-
oriented design; available at http://www.w3.org/TR/
xmlschema-1/

XML Schema Part 2: Datatypes
A set of extensible types for describing the contents of
XML elements and attributes, including things like inte-
gers, decimals, and dates; available at http://www.w3.org/
TR/xmlschema-2/

The mechanisms for defining structures and datatypes both
allow schema designers to create type systems that may be
extended or restricted.

48 | XML Pocket Reference

TIP

For more general information on XML Schema, see Eric van
der Vlist’s XML Schema (O’Reilly) or Priscilla Walmsley’s
Definitive XML Schema (Prentice-Hall). The Primer noted in
the preceding list may also be a good place to start.

XML Schema 1.0, Second Edition, is the current version
endorsed by the W3C, though work on XML Schema 1.1 has
begun.

Creating a Simple Schema
While all schemas use the same core parts, there are a num-
ber of different structural alternatives and key pieces worth
examining before diving into all of the parts. Examine the
structure of Example 8.

This document contains an authors element, which itself
contains multiple person elements. Each person element has
an id attribute and may contain a name and a nationality ele-
ment. For now, we’ll treat all of the textual content of the
elements and attributes as text. One way to define this docu-
ment is in a schema whose structure mirrors the document,

Example 8. A simple XML document for definition in a schema

<?xml version="1.0" encoding="us-ascii"?>
<authors>
 <person id="lear">
 <name>Edward Lear</name>
 <nationality>British</nationality>
 </person>
 <person id="asimov">
 <name>Isaac Asimov</name>
 <nationality>American</nationality>
 </person>
 <person id="mysteryperson"/>
</authors>

W3C XML Schema | 49

called a “russian doll” schema after the wooden matrusch-
kas; see Example 9. The names of the elements being defined
are boldfaced to make it easier to read.

This schema starts by defining the authors element, which
will be the root element for the document, and its contents.
Because the authors element contains more than simple text,
it is defined as having an xs:complexType. That type contains
a sequence of person elements. The parts of the declaration
that pertain only to the authors element are shown here.

<xs:element name="authors">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="person" maxOccurs="unbounded">
 ...
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

Example 9. A “russian doll” schema describing the Example 8
document

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" >
 <xs:element name="authors">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="person" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence minOccurs="0" >
 <xs:element name="name" type="xs:string" />
 <xs:element name="nationality" type="xs:
 string" />
 </xs:sequence>
 <xs:attribute name="id" type="xs:string"
 use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

50 | XML Pocket Reference

The declaration of the person element contains an xs:
complexType, which in turn contains an xs:sequence, specify-
ing that in this case name and nationality elements (each of
which contain only a string) may appear in the sequence at
hand. The xs:complexType for the person element also con-
tains a definition for the id attribute.

<xs:element name="person" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence minOccurs="0" >
 <xs:element name="name" type="xs:string" />
 <xs:element name="nationality" type="xs:string" />
 </xs:sequence>
 <xs:attribute name="id" type="xs:string"
 use="required"/>
 </xs:complexType>
</xs:element>

Because the name and nationality elements and the id attribute
contain only strings, they are considered “simple” compared
with the complex types of the elements that contain them. For
example, a declaration such as:

<xs:element name="name" type="xs:string" />

is sufficient to say that “the name element will appear here
and contain a string.”

There are a few other pieces to examine in Example 9, nota-
bly the maxOccurs and minOccurs attributes on xs:element, and
the use attribute on xs:attribute. These will be explored later
in this book, in the “Varied document structures” section. But
for now, you should know that you can write the schema
from Example 9 in a more modular way, as shown in
Example 10. Again, the names of elements are boldfaced.

Example 10. A more modular schema describing the Example 8
document

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" >

 <xs:element name="authors">

W3C XML Schema | 51

Instead of nesting all the declarations into one xs:element,
this version of the schema separates them into different
parts. Only one new piece is used to do this—the ref
attribute on xs:element and xs:attribute. Writing schemas
this way is frequently simpler because it allows you to reuse
elements in multiple places and because it separates informa-
tion about how often an element or attribute may appear
(maxOccurs, minOccurs, and use, which go with the ref) from
information about an element or attribute’s content (the type
attribute, xs:complexType child element, and so on).

When the xs:element and xs:attribute declarations are moved
out to be immediate children of the xs:schema element, they
become global elements and attributes, accessible for use in

 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="unbounded" ref="person"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="person">
 <xs:complexType>
 <xs:sequence minOccurs="0">
 <xs:element ref="name"/>
 <xs:element ref="nationality"/>
 </xs:sequence>
 <xs:attribute ref="id" use="required"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="nationality" type="xs:string"/>

 <xs:attribute name="id" type="xs:string"/>

</xs:schema>

Example 10. A more modular schema describing the Example 8
document (continued)

52 | XML Pocket Reference

any declaration. These elements also become possible root ele-
ments for the document. (It’s generally easier, especially if you
use namespaces, to keep xs:attribute declarations inside the
elements or attribute groups that use them, rather than mov-
ing them out to become globals.)

While these two schemas are different, the model they define
is exactly the same. For many record/field-based vocabular-
ies, the simple structures presented in Examples 9 and 10 are
more than enough to get work accomplished.

Namespaces

The only namespace declaration to appear in either Example 9
or Example 10 was the namespace declaration for XSD itself:

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

In this case, the schema defined a vocabulary that was not in
a namespace, so there was no need to define an additional
namespace. If, as is typical, your schemas define vocabular-
ies that are in a namespace, you’ll need to identify the
namespace in the root xs:schema element. Example 11 shows
a slightly modified version of Example 10, defining the
vocabulary as belonging to the http://simonstl.com/ns/
authors/ namespace. Changes to the schema appear in bold.

Example 11. A modification of Example 10 to support a
namespace

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://simonstl.com/ns/authors/"
 xmlns="http://simonstl.com/ns/authors/"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified" >

 <xs:element name="authors">
 <xs:complexType>

W3C XML Schema | 53

All of the changes in this example are at the top level of the
schema. The targetNamespace attribute tells the XSD proces-
sor what namespace is being defined, and the xmlns attribute
that follows declares that the default namespace should use
that same namespace URI. (If you leave off the xmlns attribute,
the connections between the ref attributes and their corre-
sponding xs:element and xs:attribute declarations will break.)
The elementFormDefault and attributeFormDefault attributes
declare whether or not local elements and attributes will be
namespace qualified by default. To match typical XML 1.0
practice, elements are qualified and attributes are not.

 <xs:sequence>
 <xs:element maxOccurs="unbounded" ref="person"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="person">
 <xs:complexType>
 <xs:sequence minOccurs="0">
 <xs:element ref="name"/>
 <xs:element ref="nationality"/>
 </xs:sequence>
 <xs:attribute ref="id" use="required"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="nationality" type="xs:string"/>

 <xs:attribute name="id" type="xs:string"/>

</xs:schema>

Example 11. A modification of Example 10 to support a namespace
(continued)

54 | XML Pocket Reference

WARNING

Namespace handling in XSD can get extremely compli-
cated if you start using unqualified elements, qualified at-
tributes, or mixing them by using the form attribute on
individual declarations. The easiest approaches are defi-
nitely either to work completely without namespaces or
to use qualified elements and unqualified attributes.

It’s also worth noting that you don’t have to define attributes
used in documents for namespace declarations. XSD doesn’t
consider them attributes and doesn’t validate them.

Named and anonymous type definitions

All of the types defined in Examples 9, 10, and 11 are anony-
mous. Only the xs:elements and xs:attributes have names,
while the xs:complexType elements don’t. Some of the declara-
tions reference a named type, xs:string (a predefined data-
type), but these schemas don’t create any named types of
their own. If you wanted to create named types for the com-
plex type content of Example 11, you could further modular-
ize it as shown in Example 12.

Example 12. A modification of Example 11 to break out complex
types

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://simonstl.com/ns/authors/"
 xmlns="http://simonstl.com/ns/authors/"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified" >

 <xs:element name="authors" type="authorsContent" />

 <xs:complexType name="authorsContent">
 <xs:sequence>
 <xs:element maxOccurs="unbounded" ref="person"/>
 </xs:sequence>

W3C XML Schema | 55

Instead of this definition of the authors element:

 <xs:element name="authors">
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="unbounded" ref="person"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

the schema now uses:

 <xs:element name="authors" type="authorsContent" />

 <xs:complexType name="authorsContent">
 <xs:sequence>
 <xs:element maxOccurs="unbounded" ref="person"/>
 </xs:sequence>
 </xs:complexType>

The actual xs:element now looks more like its simpler cous-
ins, which merely reference a datatype, while the xs:
complexType becomes a separate component. This approach

 </xs:complexType>

 <xs:element name="person" type="personContent" />

 <xs:complexType name="personContent">
 <xs:sequence minOccurs="0">
 <xs:element ref="name"/>
 <xs:element ref="nationality"/>
 </xs:sequence>
 <xs:attribute ref="id" use="required"/>
 </xs:complexType>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="nationality" type="xs:string"/>

 <xs:attribute name="id" type="xs:string"/>

</xs:schema>

Example 12. A modification of Example 11 to break out complex
types (continued)

56 | XML Pocket Reference

means the xs:complexType can be referenced by multiple ele-
ments that have the same content model, and it also means
advanced schema developers can derive additional types
from the authorsContent type to create variations. Addition-
ally, XSLT 2.0 and XQuery will be able to reference data by
its type. (If you don’t have an explicit reason to create named
types, it is generally easier to avoid them altogether.)

Varied document structures

While some XML documents, particularly those containing
spreadsheet or database information, need to define only
containers and possibly a sequence, richer documents often
contain a much wider variety of possibilities. Sections may be
optional or appear repeatedly, but may also be replaced with
a variety of different choices. Choices may include or be
included by sequences. XML Schema offers support for many
different kinds of document structures.

Examples 9 through 12 have each used the xs:sequence ele-
ment and the minOccurs and maxOccurs attributes shown here.

 <xs:element name="person">
 <xs:complexType>
 <xs:sequence minOccurs="0">
 <xs:element ref="name" />
 <xs:element ref="nationality" />
 </xs:sequence>
 <xs:attribute ref="id" use="required"/>
 </xs:complexType>
 </xs:element>

Compositors
The xs:sequence element is called a compositor, imposing order
on its child xs:element particles. There are two other composi-
tors available: xs:choice and xs:all. The xs:choice element
permits one of a list of particles to appear, while xs:all
requires all particles to appear but doesn’t put constraints on

W3C XML Schema | 57

the order in which they appear. In addition to setting rules for
their particles, compositors also act as a group, and you can
specify minOccurs or maxOccurs for the group as a whole. (The
default value for both minOccurs and maxOccurs is 1.)

If you wanted to define a person element that included both
name and nationality but weren’t concerned about the order
in which they appeared, you could use:

 <xs:element name="person">
 <xs:complexType>
 <xs:all>
 <xs:element ref="name"/>
 <xs:element ref="nationality"/>
 </xs:all>
 <xs:attribute ref="id" use="required"/>
 </xs:complexType>
 </xs:element>

TIP

Notice that the xs:attribute isn’t part of the group. At-
tributes are part of the type, but the compositors apply
only to element content.

If, on the other hand, you wanted to define a person element
that could contain your choice of a name or alias, you might
use:

 <xs:element name="person">
 <xs:complexType>
 <xs:choice minOccurs="0" >
 <xs:element ref="name" />
 <xs:element ref="alias" />
 </xs:choice>
 <xs:attribute ref="id" use="required"/>
 </xs:complexType>
 </xs:element>

58 | XML Pocket Reference

The particles inside an xs:sequence or xs:choice may be xs:
element, xs:sequence, xs:choice, xs:any, or xs:group elements.
(xs:all may contain only xs:element.) For example, a choice
might be situated between an element and sequence of choices:

<xs:element name="pachinko">
 <xs:complexType>
 <xs:choice>
 <xs:element name="simple" type="xs:string" />
 <xs:sequence>
 <xs:choice>
 <xs:element name="choice1" type="xs:string" />
 <xs:element name="choice2" type="xs:string" />
 </xs:choice>
 <xs:choice>
 <xs:element name="choiceA" type="xs:string" />
 <xs:element name="choiceB" type="xs:string" />
 </xs:choice>
 </xs:sequence>
 </xs:choice>
 </xs:complexType>
</xs:element>

In this case, the pachinko element may contain an element
named simple or it may contain the sequence. The sequence
requires either a choice1 or choice2 element (but not both)
followed by either a choiceA or choiceB element (again, not
both).

XML Schema prohibits certain combinations of composi-
tors, requiring that schema structures always provide a deter-
ministic path to a particular combination of elements; the
processor should never have to keep two possible choices in
mind while it works out which particle a particular element
matches. Most simple schemas will never encounter these
problems, but those that are more complex can fall afoul of
them. For more details, see Chapter 7 of Eric van der Vlist’s
XML Schema.

W3C XML Schema | 59

When anything is allowed

If you aren’t concerned about what goes into a particular
element or particle, you can use the xs:any element for its
content and xs:anyAttribute to specify its attributes. You
can limit the contents to particular namespaces using the
namespace attribute and tell the schema validator to skip the
contents using the processContents attribute. For example,
if you want to create an extension element that permits any
content in any namespace, you might declare it like this:

<xs:element name="extension">
 <xs:complexType>
 <xs:sequence minoccurs="0" maxOccurs="unbounded">
 <xs:any namespace="##any" processContents="skip" />
 </xs:sequence>
 <xs:anyAttribute namespace="##any"
processContents="skip" />
 </xs:complexType>
</xs:element>

The namespace attribute can hold a namespace URI (or URIs,
separated by whitespace) as well as one of four wildcards:

##local
Only elements (or attributes when using xs:anyAttribute)
that are not in any namespace may appear.

##targetNamespace
Only elements (or attributes when using xs:anyAttribute)
in the schema’s target namespace may appear.

##any
Elements (or attributes when using xs:anyAttribute) in
any namespace may appear.

##other
Only elements (or attributes when using xs:anyAttribute)
that are not in the schema’s target namespace may
appear.

60 | XML Pocket Reference

The xs:any element must appear within an xs:sequence or xs:
choice. The xs:anyAttribute may appear in xs:attributeGroup,
as well as xs:complexType and related elements.

Model groups

If you have lots of declarations you’ll be using frequently but
you don’t need to be able to extend or restrict them, you can
use the xs:group element, first to define a group of declara-
tions and then to reference them.

For example, the declaration for the person element in
Example 10 looks like this:

<xs:element name="person">
 <xs:complexType>
 <xs:sequence minOccurs="0">
 <xs:element ref="name"/>
 <xs:element ref="nationality"/>
 </xs:sequence>
 <xs:attribute ref="id" use="required"/>
 </xs:complexType>
</xs:element>

If you planned to reuse this combination of name and
nationality but not the id attribute, you could create a
model group holding the sequence and reference it inside the
xs:complexType. The new version would look like this:

<xs:element name="person">
 <xs:complexType>
 <xs:group ref="name-nationality" minOccurs="0" />
 <xs:attribute ref="id" use="required"/>
 </xs:complexType>
</xs:element>

<xs:group name="name-nationality">
 <xs:sequence>
 <xs:element ref="name"/>
 <xs:element ref="nationality"/>
 </xs:sequence>
</xs:group>

W3C XML Schema | 61

You can do the same thing to attributes if you have a group
of attributes to be applied repeatedly. To create a set of
attributes referring to URLs and giving MIME types of the
desired content, you might create an xs:attributeGroup like
this one:

<xs:attributeGroup name="retrievalInformation" >
 <xs:attribute name="href" type="xs:anyURI" />
 <xs:attribute name="mime-type" type="xs:string"/>
</xs:attribute>

<xs:element name="link">
 <xs:complexType>
 <xs:attributeGroup ref="retrievalInformation" />
 </xs:complexType>
</xs:element>

The link element can now have attributes named href and
mime-type.

The xs:group element may contain any compositor (such as xs:
sequence, xs:choice, or xs:all) and its contents. Meanwhile,
xs:attributeGroup is limited to containing xs:attribute, xs:
attributeGroup, or xs:anyAttribute. If you need to put both ele-
ments and attributes in a single group, use xs:complexType
instead.

Empty content, mixed content, and default values

XML Schema can support two additional types of content
and, in some cases, can supply content to documents. The
simplest of these cases is the creation of an element (like br
in HTML) that must always be empty. The easiest way to do
this is to use an xs:complexType element that doesn’t refer-
ence any elements, like this:

<xs:element name="br">
 <xs:complexType>
 </xs:complexType>
</xs:element>

62 | XML Pocket Reference

If you want to add attributes, they can be placed in the xs:
complexType element without changing the emptiness of the
br element.

Another common case is that of mixed content, where text
and elements appear on the same level of a document. A clas-
sic example is a paragraph that contains bold, italic, and
underlined text. In simple HTML, it might look like this:

<p>This is bold, this is <i>italic</i>, and this is
<u>underline</u>.</p>

To make this work, you need to create a definition of the p
element that contains an xs:complexType element whose
mixed attribute is set to true:

<xs:element name="p">
 <xs:complexType mixed="true">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="b" type="xs:string" />
 <xs:element name="i" type="xs:string" />
 <xs:element name="u" type="xs:string" />
 </xs:choice>
 </xs:complexType>
</xs:element>

The choice will permit as many b, i, and u elements as neces-
sary, while mixed="true" will permit text to be mingled with
any of them.

If instead of these fancy features you just want to create a
definition that provides a default value to an element or
attribute if none is provided, you can use the default
attribute on simple element or attribute declarations. To cre-
ate an element called name whose value defaults to Winky if
the element is present but empty, you would write:

<xs:element name="name" default="Winky" />

To create an attribute named flavor whose value defaults to
vanilla, you would write:

<xs:attribute name="flavor" default="vanilla" />

W3C XML Schema | 63

Unlike the element, the default value will be applied only if
the attribute is absent. You can also fix a value to an attribute
or element. If you wanted to insist that the flavor must
always be vanilla, you could instead use:

<xs:attribute name="flavor" fixed="vanilla" />

The flavor attribute’s value will default to vanilla if the
attribute isn’t present in the document, and an error will be
reported if a document contains a flavor attribute with any
other value.

Annotations

XML Schema also provides support for annotations. Every
single element in XML Schema permits an xs:annotation ele-
ment as its first child (except xs:annotation itself, that is).
The xs:annotation element may contain any number of xs:
documentation and xs:appinfo elements, and the content
models for both of these are wide open.

The xs:appinfo element is intended for machine-readable
content, while the xs:documentation element is intended for
human-readable content. Both elements accept a source
attribute that points to a URI, and xs:documentation also
accepts an xml:lang attribute that specifies the human lan-
guage in which the documentation appears. xs:documentation
in particular is an opportunity for you to provide additional
information in your schemas. For example, to document the
flavor attribute’s peculiar status, a careful schema writer
might modify its definition, as shown here:

<xs:attribute name="flavor" fixed="vanilla">
 <xs:annotation>
 <xs:documentation xml:lang="en-US">
 While many people like multiple flavors of ice
 cream, the manager of this project insists that
 everyone must have vanilla, and accepts no questions
 on the matter.
 </xs:documentation>
 </xs:annotation>
</xs:attribute>

xs:all

64 | XML Pocket Reference

You can also use HTML, DocBook, or the XML vocabulary
of your choice within xs:documentation and then use this
additional schema information with other programs or
stylesheets to create more formal documentation.

XML Schema Structure Elements
These elements form the body of any XML schema, defining
the document structure for documents valid against the
schema. Meanwhile the datatypes, described in the later sec-
tion “XML Schema Datatypes,” define the contents that fit
into that structure.

xs:all

Attributes

maxOccurs
Present, but fixed at 1

minOccurs
Either 0 or 1

Contents
xs:annotation?, xs:element*

The xs:all element is used to create groups of elements that can
appear in any order within their parent. Like the xs:all element
itself, the xs:element declarations contained by xs:all have
another restriction placed on them: all of their minOccurs and
maxOccurs attributes must be set to 0 or 1.

xs:annotation

Attributes

None, except id.

Contents
(xs:appinfo | xs:documentation)*

xs:any

W3C XML Schema | 65

The xs:annotation element provides easy extensibility for any
XML Schema declaration. The xs:annotation element may be the
first child of any XML Schema element (except for xs:annotation
itself), and its two child elements can contain any well-formed
XML, allowing schema designers to add their own custom infor-
mation to schema declarations as they see fit.

xs:any

Attributes

maxOccurs
Any non-negative integer or unbounded.

minOccurs
Any non-negative integer.

namespace
One of ##any, ##other, or a list of URIs used to limit the
namespaces of the elements that may appear here. The URI
list may include the special value ##targetNamespace, meaning
the schema’s target namespace, and ##local, to indicate that
elements without a namespace may appear. ##any is the
default, allowing elements in any namespace. ##other allows
elements in any namespace except the schema’s target
namespace.

processContents
One of lax, skip, or strict. If strict (the default), all
elements appearing here must either be declared in the
schema or have a valid xsi:type attribute and must conform
to those declarations. If skip, elements don’t need to be
declared; if they are declared, they don’t need to be valid. If
lax, elements don’t need to be declared, but if they are
declared or have an xsi:type attribute, they have to be valid
according to that declaration.

xs:anyAttribute

66 | XML Pocket Reference

Contents
xs:annotation?

The xs:any element is used to specify contents very loosely. At its
loosest, an xs:any element of the following form:

<xs:any minOccurs="0" maxOccurs="unbounded"
namespace="##any" processContents="skip" />

is almost as flexible as the ANY element type in DTDs, allowing any
kind of well-formed element (though not textual) content. The
attributes may be used to provide more control over the contents,
limiting them by quantity (minOccurs, maxOccurs), namespace
(namespace), or the kind of schema processing they should receive
(processContents).

xs:anyAttribute

Attributes

namespace
One of ##any, ##other, or a list of URIs used to limit the
namespaces of the attributes that may appear here. The URI
list may include the special value ##targetNamespace, meaning
the schema’s target namespace, and ##local, to indicate that
attributes without a namespace may appear. ##any is the
default, allowing attributes in any namespace. ##other allows
attributes in any namespace except the schema’s target
namespace.

processContents
One of lax, skip, or strict. If strict (the default), all
attributes appearing here must be declared in the schema and
must conform to those declarations. If skip, attributes don’t
need to be declared; if they are declared, they don’t need to be
valid. If lax, attributes don’t need to be declared, but if they
are declared, they have to be valid according to that
declaration.

Contents
xs:annotation?

The xs:anyAttribute element is used to specify attribute contents
very loosely. The attributes may be used to provide more control

xs:attribute

W3C XML Schema | 67

over which attributes are allowed to appear, limiting them by
namespace (namespace) or the kind of schema processing they
should receive (processContents). Like xs:attribute, this element
may only appear inside an xs:complexType element.

xs:appInfo

Attributes

source
A URI pointing to additional information

Contents

Any well-formed XML or nothing.

The xs:appInfo element is used within xs:annotation elements to
provide machine-readable information—typically for information
beyond that which is supported by XML Schema itself, such as addi-
tional Schematron rules. This information may be referenced by the
source attribute or included directly in the xs:appInfo element’s
contents. There are no restrictions on the content of the xs:appInfo
element, provided it is well formed.

Unlike nearly every other element in XML Schema, the xs:appInfo
element cannot have an id attribute.

xs:attribute

Attributes

default
A value for the attribute that should be reported in cases where
instance documents don’t explicitly include the attribute. (An
xs:attribute element may have either a default attribute or a
fixed attribute, but not both.)

fixed
A value for the attribute that cannot be changed. Documents
may not provide a different value for the attribute, and this
value is provided if the documents don’t explicitly include the
attribute. (An xs:attribute element may have either a default
attribute or a fixed attribute, but not both.)

xs:attribute

68 | XML Pocket Reference

form
Takes the values qualified and unqualified. If qualified, the
attribute must be used—with a prefix—in the schema’s target
namespace. If unqualified, the attribute must be used without
a namespace. (form provides an opportunity to override the
attributeFormDefault attribute of the xs:schema element.) This
only works on local attribute declarations.

name
The local name of the attribute. Note that this is not the quali-
fied name; the namespace for the attribute is determined by
the value of the form attribute if name is used. (An xs:attribute
element may have either a name attribute or a ref attribute, but
not both. An xs:attribute element that uses name must also
provide a type attribute to complete the definition of the
attribute; otherwise, it defaults to xs:anySimpleType.)

ref
The namespace-qualified name of the attribute to be included
by reference to a declaration at the top level of the schema.
(An xs:attribute element may have either a name attribute or
a ref attribute, but not both.)

type
The namespace-qualified type of the attribute’s contents. (An
xs:attribute element that uses name must also provide a type
attribute or an xs:simpleType child element to complete the
definition of the attribute; otherwise, it defaults to xs:
anySimpleType.)

use
One of three values: optional (the default), prohibited, or
required. optional and required are fairly self-explanatory,
but prohibited is used to exclude attributes when performing
derivation by restriction.

Contents
xs:annotation?, xs:simpleType?

The xs:attribute element may appear only inside an xs:complexType
or xs:attributeGroup element. It may either define an attribute,
using name, or reference an attribute, using ref. Either the type
attribute or an xs:simpleType child element may define the allowed
contents of the attribute being defined.

xs:choice

W3C XML Schema | 69

xs:attributeGroup

Attributes

name
The unqualified name of the attribute group that is being
defined. (Attribute groups take the target namespace of the
schema.) xs:attributeGroup elements with the name attribute
may appear only as children of xs:schema and xs:redefine
elements.

ref
The unqualified name of the attribute group that is being
referenced. (Attribute groups take the target namespace of the
schema.) xs:attributeGroup elements with the ref attribute
may be included in xs:attributeGroup, xs:complexType, xs:
extension, and xs:restriction elements.

Contents
xs:annotation?, ((xs:attribute | xs:attributeGroup)*,
 xs:anyAttribute?))

The xs:attributeGroup element is used to define and reference collec-
tions of attributes. Uses of xs:attributeGroup that define the groups
must have a name attribute and may include xs:annotation, xs:
attribute, xs:attributeGroup, and xs:anyAttribute child elements.
Uses of xs:attributeGroup that reference previously defined attribute
groups must have a ref attribute and are typically empty, though
they may contain an xs:annotation child element.

xs:choice

Attributes

maxOccurs
Any non-negative integer or unbounded. (Defaults to 1, but
cannot be specified when xs:choice appears inside an xs:
group element.)

minOccurs
Any non-negative integer. (Defaults to 1, but cannot be speci-
fied when xs:choice appears inside an xs:group element.)

xs:complexContent

70 | XML Pocket Reference

Contents
xs:annotation?, (xs:element | xs:group | xs:choice |
 xs:sequence | xs:any)*

The xs:choice element specifies that any one of the definitions
included inside it (xs:element, xs:group, xs:choice, xs:sequence, or
xs:any) may appear. When the xs:choice element is used outside
an xs:group element, the maxOccurs and minOccurs attributes may
set the number of times this choice can happen. The default is 1,
but it can be set higher—even to unbounded—allowing the creation
of elements that contain an arbitrary number of mixed elements.

xs:complexContent

Attributes

mixed
Can be set to true when mixed content is allowed; false
when mixed content is prohibited

Contents
xs:annotation?, (xs:restriction | xs:extension)

The xs:complexContent element is used when deriving new complex
types by extending or restricting existing complex types. It can
contain an optional xs:annotation element followed by either an
xs:restriction or an xs:extension element. The use of the mixed
attribute depends on the type being extended or restricted. If the
content of xs:complexContent is an xs:extension, it must match the
mixed attribute of the type being extended.

xs:complexType

Attributes

abstract
Set to false (the default) when the type can appear in a docu-
ment; true when it can be used only as a base for deriving
other types.

block
Used to determine whether subtypes of the type can appear
where the type is specified. If set to extension, then extensions

xs:complexType

W3C XML Schema | 71

of this type may not appear where it is used. If set to
restriction, then restrictions of this type may not appear
where it is used. If set to #all, then neither extensions nor
restrictions of this type may appear where it is used.

final
Used to determine whether or not subtypes of the type can be
defined in the schema. If set to extension, then extensions of
this type may not be defined. If set to restriction, then
restrictions of this type may not be defined. If set to #all, then
neither extensions nor restrictions may be defined.

mixed
Can be set to true when mixed content (text interspersed
among the child elements) is allowed; false when mixed
content is prohibited. (The default is false.)

name
A name for the type, not a namespace-qualified name.

Contents
xs:annotation?, (xs:simpleContent | xs:complexContent |
 ((xs:group | xs:all | xs:choice | xs:
 sequence)?,
 ((xs:attribute | xs:attributeGroup)*,
 xs:anyAttribute?)))

The xs:complexType element is a key component for most schemas,
allowing the creation of types that can be restricted or extended, as
well as simpler things such as elements with attributes. The
attributes define rules for the type, while the contents of the xs:
complexType element define the contents of the type. The attributes
may be influenced by declarations earlier in the schema. The final
attribute will default to the value of the finalDefault attribute on
the root xs:schema element, while the block attribute will default to
the value of the blockDefault attribute on the root xs:schema
element.

The contents may include xs:annotation followed by a content defi-
nition: xs:simpleContent, xs:complexContent, or possibly a series of
xs:group, xs:all, xs:choice, and xs:sequence elements. Once the
content has been defined, attributes may be defined, using xs:
attribute, xs:attributeGroup, and xs:anyAttribute.

xs:documentation

72 | XML Pocket Reference

xs:documentation

Attributes

source
A URI pointing to additional information

xml:lang
A language identifier specifying which language is used by the
documentation

Contents

Any well-formed XML, or nothing.

The xs:documentation element is used within xs:annotation
elements to provide human-readable information—typically docu-
mentation about the components being defined in the schema. That
information may be referenced by the source attribute or included
directly in the xs:documentation element’s contents. There are no
restrictions on the content of the xs:documentation element provided
it is well formed.

Unlike nearly every other element in XML Schema, the xs:
document element cannot have an id attribute.

xs:element

Attributes

abstract
Set to false (the default) when the element can appear in a
document; true when this element can be replaced only with
a member of its substitution group.

block
Normally, you can use the xsi:type attribute to indicate that
a particular instance of the element has a type that is a
subtype of the type it’s declared to have in the schema. You
can also substitute an element with a member of its substitu-
tion group. If block is set to #all, then you can’t do either of
these things. If block is set to extension, then the instance
element’s type can’t be an extension of the declared type. If
block includes restriction, then the instance element’s type

xs:element

W3C XML Schema | 73

can’t be a restriction of the declared type. If block includes
substitution, then the element can’t be substituted with a
member of the substitution group.

final
Used to determine whether other elements can use this
element as the head of their substitution group. If set to
extension, then members of this element’s substitution group
can’t have types that are extensions of this element’s type. If
set to #all, then members of this element’s substitution group
must have the same type as this element.

form
Takes the values qualified and unqualified. If qualified, the
element must be used—with a prefix—in the schema’s target
namespace. If unqualified, the element must be used without
a namespace. (form provides an opportunity to override the
elementFormDefault attribute of the xs:schema element.) form
works only on local declarations.

maxOccurs
Any non-negative integer or unbounded. (Defaults to 1, but
cannot be specified when xs:choice appears inside an xs:
group element.) Defines the maximum number of times this
element can be repeated in a valid document. Global element
declarations—those that are direct children of the xs:schema
root element—cannot use maxOccurs. When xs:element is
contained in an xs:all element, the value of maxOccurs may
only be 0 or 1.

minOccurs
Any non-negative integer. (Defaults to 1, but cannot be speci-
fied when xs:choice appears inside an xs:group element.)
Defines the minimum number of times this element can be
repeated in a valid document. Global element declarations—
those that are direct children of the xs:schema root element—
cannot use minOccurs. When xs:element is contained in an xs:
all element, the value of minOccurs may only be 0 or 1.

name
A name for the element, not a namespace-qualified name.
When name is used, the ref attribute cannot be used.

xs:extension

74 | XML Pocket Reference

nillable
Can be true or false, and indicates whether or not instances
of this element can use the xsi:nil attribute (when the
element is empty) to indicate a nil value as opposed to an
empty value.

ref
The qualified name of the element being referenced. When
ref is used, the name attribute cannot be used.

substitutionGroup
The namespace-qualified name of the substitution group to
which this element belongs.

type
The namespace-qualified type of the element’s contents. An
xs:element element that uses name must provide either a type
attribute or type information in its child elements to complete
the definition of the attribute. Otherwise, it defaults to xs:
anyType.

Contents
xs:annotation?, ((xs:simpleType | xs:complexType)?,
 (xs:unique | xs:key | xs:keyref)*)

xs:element is used to declare elements. If the xs:element appears
as a child of the root xs:schema element, it is a global declaration,
meaning it’s available for use in other declarations and is a
possible root element for instance documents conforming to the
schema. xs:element may appear either as a declaration of a new
element (using the name and type attributes or type information in
its content) or, using the ref attribute, as a reference to a previ-
ously defined element.

xs:extension

Attributes

base
The namespace-qualified name of the type being extended

xs:group

W3C XML Schema | 75

Contents
xs:annotation?, ((xs:group | xs:all | xs:choice | xs:
 sequence)?,
 ((xs:attribute | xs:attributeGroup)*,
 xs:anyAttribute?))

xs:extension is used to define extensions to the type specified in
base. It can appear in xs:simpleContent and xs:complexContent,
but when it appears in xs:simpleContent, it can specify only addi-
tional attributes, not element content. When additional elements
are specified, they must appear after the contents specified in the
original base definition.

xs:field

Attributes

xpath
An XPath expression used by the xs:unique, xs:key, or xs:
keyRef element containing the xs:field

Contents
xs:annotation?

xs:field is used within xs:unique, xs:key, or xs:keyRef elements
and stores an XPath location path. These expressions use a very
simplified subset of XPath, permitting only abbreviated syntax for
the child (/), descendent-or-self (//), and attribute axes to be
used. (In place of explicit element names, the * expression may be
used to match any name, and the prefix:* expression to match
any name in a given namespace.) Multiple location paths may be
stored in the xpath attribute, each separated by a vertical bar.

xs:group

Attributes

maxOccurs
Any non-negative integer or unbounded.

minOccurs
Any non-negative integer.

xs:import

76 | XML Pocket Reference

name
The unqualified name of the group being defined. (Groups
get their namespace from that of the schema.) xs:group
elements with the name attribute may appear only as children
of xs:schema and xs:redefine elements.

ref
The unqualified name of the attribute group being referenced.
(Groups get their namespace from that of the schema.) xs:group
elements with the ref attribute may be included in xs:choice,
xs:complexType, xs:extension, xs:group, xs:restriction, and
xs:sequence elements.

Contents
xs:annotation?, (xs:group | xs:all | xs:choice | xs:
 sequence)

xs:group with the name attribute lets you define content model
fragments that can then be used elsewhere in the schema,
including by xs:group elements with the ref attribute. All of these
groups are global to the schema.

xs:import

Attributes

namespace
The namespace URI of the content defined in the imported
schema

schemaLocation
A URI identifying where to find the schema to be imported

Contents
xs:annotation?

xs:import lets your schema reference schemas for namespaces
other than the one your schema uses, effectively incorporating
their declarations so that your content can include their content.
It can also be used to include schemas that use no namespace
whatsoever.

xs:key

W3C XML Schema | 77

xs:include

Attributes

id
A unique ID value (optional)

schemaLocation
A URI identifying where to find the schema to be imported

Contents
xs:annotation?

xs:include is used when you want to break your large schema into
several smaller and potentially reusable parts. All the declarations
in the included files must use the target namespace of the schema
doing the inclusion. (If they don’t identify a target namespace,
they will be assigned the namespace of the schema doing the
inclusion, which allows the creation of highly-flexible “chame-
leon” schema components.) Inclusions are allowed to be circular:
Schema A can include schema B, which can in turn include
schema A. You cannot change the definitions of included schemas
using this element; to do that, use xs:redefine.

xs:key

Attributes

name
A name for the key (not namespace qualified, as it uses the
namespace of the schema)

Contents
xs:annotation?, (xs:selector, xs:field+)

xs:key lets you state that parts of a document must have specific
values unique across the set of parts for the document to be valid.
An xs:key element uses the XPath value in an xs:selector element
to identify where the key applies, and the xs:field element to
specifically identify which part of the document must be both
present and unique among those values.

xs:keyref

78 | XML Pocket Reference

xs:key elements may appear only as children of xs:element. The
xs:selector XPaths are calculated from the element in which the
key is defined, while the xs:field XPaths are calculated from the
selector. The name attribute is used for identification with xs:
keyref. Also, xs:key behaves exactly like xs:unique, except that
xs:unique does not require the values it identifies to be present.

xs:keyref

Attributes

id
A unique ID value (optional)

name
A name for the key reference

refer
The qualified name of the xs:key or xs:unique referenced by
the key reference

Contents
xs:annotation?, (xs:selector, xs:field+)

xs:keyref allows the creation of constraints that compare values
across document components. It does this by specifying that the
values of the fields for the elements specified by selector must
match the contents of the key identified by refer.

xs:list

Attributes

itemType
A qualified name of the type contained within the list

Contents
xs:annotation?, xs:simpleType?

xs:list is used to specify that a whitespace-separated list of values
that conforms to a specific type should be used as content. This is
called derivation by list and is only possible in the context of an

xs:redefine

W3C XML Schema | 79

xs:simpleType element. The type to which values conform may be
identified through either the itemType attribute or a child xs:
simpleType element, but not both.

xs:notation

Attributes

name
A name for the notation

public
A public identifier used for the notation, like those used in
DTD NOTATION declarations

system
A URI used as a system identifier for the notation, like those
used in DTD NOTATION declarations

Contents
xs:annotation?

xs:notation recreates the NOTATION functionality of XML 1.0
DTDs, but adds namespace qualification to their names. xs:
notation is used in conjunction with the xs:NOTATION type, which
can contain an enumerated list of types that have been defined
using xs:notation.

xs:redefine

Attributes

schemaLocation
A URI identifying where the processor should find the schema
to be included

Contents
xs:annotation?

xs:redefine behaves exactly like xs:include, importing defini-
tions from schema modules in the same namespace (or in no
namespace). The only difference is that when xs:redefine is used,

xs:restriction

80 | XML Pocket Reference

definitions imported from those modules may be overridden
through new definitions. (The exceptions to this are xs:element,
xs:attribute, and xs:notation, which you cannot redefine.)

xs:restriction

Attributes

base
The type whose content is being modified to create a new type

Contents
xs:annotation?,
(xs:simpleType?, (xs:enumeration | xs:fractionDigits |
 xs:maxExclusive | xs:maxInclusive |
 xs:minExclusive | xs:minInclusive |
 xs:pattern | xs:pattern)*) |
((xs:group | xs:all | xs:choice | xs:sequence)?,
((xs:attribute | xs:attributeGroup)*,
 xs:anyAttribute?))
)

xs:restriction allows you to create derived types in which the
content model is the same as, or reduced from, the base type. Any
type created using xs:restriction must be capable of being vali-
dated against the type from which it is derived. The base type may
be identified with either the base attribute or the xs:simpleType
child element, but not both. The content constraints for simple
types must be defined using the vocabulary for simple types, while
those for complex types must be defined using the vocabulary for
complex types.

xs:schema

Attributes

attributeFormDefault
A schema-wide setting for whether the form attribute on xs:
attribute elements should default to qualified or unqualified
(the default).

xs:schema

W3C XML Schema | 81

blockDefault
A schema-wide setting for whether the block attribute on xs:
element and xs:complexType elements should default to #all or
some combination of extension, restriction, or substitution.

elementFormDefault
A schema-wide setting for whether the form attribute on xs:
element elements should default to qualified or unqualified
(the default).

finalDefault
A schema-wide setting for whether the final attribute on xs:
element and xs:complexType elements should default to #all,
extension, or restriction.

targetNamespace
A URI that is the namespace used by all components defined
in this schema. If no target namespace is specified, the
elements and attributes will be in no namespace unless,
perhaps, they are included by xs:include, which may assign a
different namespace to unqualified components.

version
The version of the schema this particular document
represents.

xml:lang
The human language used to write the schema.

Contents
((xs:include | xs:import | xs:redefine | xs:annotation)*,
 ((xs:simpleType | xs:complexType | xs:group |
 xs:attributeGroup) | xs:element | xs:attribute |
 xs:notation), xs:annotation*)*

xs:schema is the container element in which all other schema
components must be placed. Its attributes set the target
namespace used throughout the schema as well as a number of
defaults for other declarations.

xs:selector

82 | XML Pocket Reference

xs:selector

Attributes

xpath
An XPath location path used by the xs:unique, xs:key, or xs:
keyRef element containing the xs:selector

xs:selector is used within xs:unique, xs:key, or xs:keyRef elements
and stores an XPath location path. These expressions use a very
simplified subset of XPath, permitting only abbreviated syntax for
the child axis to be used. In place of explicit element names, the *
expression may be used to match any name, and the prefix:*
expression to match any name in a given namespace. // may be
used for any descendant, but only at the beginning of the XPath. No
predicates or attributes may be used. Multiple location paths may
be stored in the xpath attribute, each separated by a vertical bar.

xs:sequence

Attributes

maxOccurs
Any non-negative integer or unbounded

minOccurs
Any non-negative integer

Contents
xs:annotation?, (xs:element | xs:group | xs:choice |
 xs:sequence | xs:any)*

The xs:sequence element specifies that the definitions included
inside it (xs:element, xs:group, xs:choice, xs:sequence, or xs:any)
must appear in the order they are listed. When the xs:sequence
element is used outside an xs:group element, the maxOccurs and
minOccurs attributes may set the number of times this choice can
happen. The default is 1, but it can be set higher—even to
unbounded—allowing the creation of elements that contain an arbi-
trary number of repetitions of a particular sequence of elements.

xs:simpleType

W3C XML Schema | 83

xs:simpleContent

Attributes

id
A unique ID value (optional)

Contents
xs:annotation?, (xs:extension | xs:restriction)

xs:simpleContent is used within xs:complexType elements when
defining a complex type with simple content (text content plus
attributes), when either extending an existing simple type (adding
attributes) or restricting an existing complex type with simple
content (removing attributes or restricting the simple content). All
of the type definition takes place within the child xs:extension or
xs:restriction elements.

xs:simpleType

Attributes

final
Used to determine whether or not subtypes of the type can be
defined in the schema. If set to list, then this type may not be
extended by list. If set to union, then this type may not be
extended by union. If set to restriction, then restrictions of
this type may not be defined. If set to #all, then neither lists,
unions, nor restrictions may be defined.

name
A name for the type, not a namespace-qualified name.

Contents
xs:annotation?, (xs:restriction | xs:list | xs:union)

xs:simpleType elements may be used directly in xs:schema or xs:
redefine elements, in which case they define types identified with
their name attribute. Or they may be used in xs:attribute, xs:
element, xs:list, xs:restriction, or xs:union elements, in which
case they define anonymous types that are used strictly within
those contexts.

xs:union

84 | XML Pocket Reference

The nature of the type is defined by restriction, list, or union, but
must be based on a simple type (either predefined by XML
Schema or user-defined in the schema).

xs:union

Attributes

memberTypes
A whitespace-separated list of the base types that may appear
in the type

Contents
xs:annotation?, xs:simpleType*

xs:union permits the creation of simple types that may take more
than one kind of data—both an xs:boolean and an xs:byte, for
example. The list of those types may appear in the memberTypes
attribute and/or in child xs:simpleType elements. If both are used,
the list of types will include both sets of possibilities.

xs:unique

Attributes

name
A name for the key (not namespace-qualified)

Contents
xs:annotation?, (xs:selector, xs:field+)

xs:unique lets you state that parts of a document must have values
unique across the set of parts for the document to be valid. An xs:
unique element uses the XPath value in an xs:selector element to
identify where the constraint applies and the xs:field element to
specifically identify which part of the document must be unique
among those values. (Values may also be missing.)

xs:unique elements may appear only as children of xs:element.
The xs:selector XPaths are calculated from the element in which
the key is defined, while the xs:field XPaths are calculated from

xs:anyURI

W3C XML Schema | 85

the selector. The name attribute is used for identification with xs:
keyref. Also, xs:unique behaves exactly like xs:key, except that
xs:key requires the values it identifies to be present.

XML Schema Datatypes
XML Schema provides 19 primitive types, 25 derived types,
and 1 unusable base type. Most of these types fall into a few
families, representing strings, numbers, lists, dates and times,
and a few other pieces such as encoded binary values.

xs:anySimpleType

Facets

Effectively none (users cannot derive from anySimpleType)

xs:anySimpleType is used only in the schema for XML Schema
itself and is the theoretical ur-type from which all XML Schema
types derive.

xs:anyURI

Facets

xs:enumeration, xs:length, xs:maxLength, xs:minLength, xs:
pattern, xs:whiteSpace

The xs:anyURI type is meant to hold the URIs (including URLs)
normally contained by the XLink (and also the HTML) href
attribute. Its use isn’t limited to this, however, and developers
may apply it to any situation in which using URIs is appropriate.

While the xs:anyURI type is designed to store URIs, it doesn’t do
any special, URI-specific processing to them. xs:anyURI doesn’t
include any mechanisms for making relative URIs absolute or for
escaping or unescaping characters as required by RFC 2396 or
2732 when using URIs. Schema processors don’t check to find out
if anything is present at the target of the URI. All of this function-
ality, if needed, must be provided by the application after schema
processing is complete.

xs:base64binary

86 | XML Pocket Reference

Sample acceptable values: http://example.com/, #example, mailto:
example@example.com, urn:oid:1.3.6.1.4.1.6320, /my/monkey/index.
htm?species=Capuchin

xs:base64binary

Facets

xs:enumeration, xs:length, xs:maxLength, xs:minLength, xs:
pattern, xs:whiteSpace

The xs:base64binary type is designed to contain information repre-
sented using the Base64 algorithm described in RFC 2045 (http://ietf.
org/rfc/2045.txt). Base64 encoding allows applications to encode
binary data as ASCII text and retrieve it again after transmission. The
only characters allowed in Base64-encoded data are the letters A–Z
and a–z, the numbers 0–9, and the symbols plus (+) and slash (/).
The encoding uses 4 bytes for every three of these characters. The
data is represented in 76-character lines (because of its origins as part
of the MIME mail rules) separated by line feeds. The equals sign (=)
is used to pad lines if necessary.

TIP

The Base64 algorithm has been separated from RFC 2045
into a separate specification, RFC 3548 (http://ietf.org/rfc/
3548.txt). While that’s a more convenient place to locate
details of the algorithm, the XML Schema specification
still normatively references RFC 2045.

While Base64 encoding is hardly an efficient means of trans-
porting information, it is somewhat more efficient than the other
type XML Schema provides for this task, xs:hexBinary.

xs:boolean

Facets

xs:pattern, xs:whiteSpace

The xs:boolean type offers only two choices for its value: true
(represented by true or 1) or false (represented by false or 0).

xs:dateTime

W3C XML Schema | 87

xs:byte

Facets

xs:enumeration, xs:fractionDigits, xs:maxExclusive, xs:
maxInclusive, xs:minExclusive, xs:minInclusive, xs:pattern,
xs:totalDigits, xs:whiteSpace

The xs:byte type stores integer values between –128 and 127. An
optional leading plus or minus sign is permitted, but decimal
points are not. Legal values include -128, -94, 0, 97, and +127.

xs:date

Facets

xs:enumeration, xs:maxExclusive, xs:maxInclusive, xs:
minExclusive, xs:minInclusive, xs:pattern, xs:whiteSpace

The xs:date type stores individual Gregorian calendar dates in the
format CCYY-MM-DD, where CC is two or more digits for the century,
YY is the year (00–99), MM is the month (01–12), and DD is the day
(01–31). For years before 1, a negative sign may appear before the
century. Acceptable dates include 1999-11-25, -0044-03-15, and
2020-01-01.

A time zone relative to Coordinated Universal Time, also known
as Greenwich Time or UTC, may also be added. If there is a time
zone, the format is ±hh:mm, wherein a plus or minus sign is
followed by a two-digit value for hours, then a colon, and then a
two-digit value for minutes. You can also use Z in place of the time
zone, indicating UTC. Valid dates with a time zone include 1999-
11-25+05:00, -0044-03-15-10:30, and 2020-01-01Z.

xs:dateTime

Facets

xs:enumeration, xs:maxExclusive, xs:maxInclusive, xs:
minExclusive, xs:minInclusive, xs:pattern, xs:whiteSpace

The xs:dateTime type combines Gregorian calendar dates with
times. Its contents appear in the format CCYY-MM-DDThh:mm:ss,
where CC is the century, YY is the year (00–99), MM is the month

xs:decimal

88 | XML Pocket Reference

(01–12), DD is the day (01–31), hh is the hour (00–23), mm is the
minute (00–59), and ss is the second (00–59, plus an optional
decimal part). For years before 1, a negative sign may appear
before the century. Acceptable xs:dateTime values include 1999-
11-25T04:03:20, -0044-03-15T12:00:00, and 2020-01-01T18:47:49.

A time zone relative to Coordinated Universal Time, also known
as Greenwich Time or UTC, may also be added. If there is a time
zone, the format is ±hh:mm, wherein a plus or minus sign is
followed by a two-digit value for hours, then a colon, and then a
two-digit value for minutes. You can also use Z in place of the time
zone, indicating UTC. Valid date/time combinations with a time
zone include 1999-11-25T04:03:20+05:00, -0044-03-15T12:00:00-
10:30, and 2020-01-01T18:47:49Z.

xs:decimal

Facets

xs:enumeration, xs:fractionDigits, xs:maxExclusive, xs:
maxInclusive, xs:minExclusive, xs:minInclusive, xs:pattern,
xs:totalDigits, xs:whiteSpace

The xs:decimal type represents a base-10 number, including any
number of fractional digits to the right of the decimal point.
Values may include the digits 0–9 (and only those digits, not
other Unicode digits), a leading plus or minus sign, and a single
decimal point. xs:decimal does not support scientific notation or
values representing infinity. (For those purposes you should use
xs:double or xs:float.) Acceptable values include -20, +25.1, 0.2,
3.1415926535897932384626433832795, 0, -0, -0., and +.0.

xs:double

Facets

xs:enumeration, xs:maxExclusive, xs:maxInclusive, xs:
minExclusive, xs:minInclusive, xs:pattern, xs:whiteSpace

The xs:double type represents a double-precision 64-bit IEEE 754
floating-point number. In addition to the digits 0–9 (and only
those digits, not other Unicode digits), a leading plus or minus

xs:duration

W3C XML Schema | 89

sign, and a single decimal point, xs:double also accepts scientific
notation and the values INF (infinity), -INF (negative infinity), and
NaN (not a number). If scientific notation is used, the mantissa may
be a decimal but the exponent must be an integer. No preceding
plus sign may be used on the exponent, but a preceding minus
sign is acceptable. An E or an e separates the mantissa and the
exponent. Legal values include 3.14159265358, -2.32E90, 1.7E12,
1.7E-12, 0, and -0.

xs:duration

Facets

xs:enumeration, xs:maxExclusive, xs:maxInclusive, xs:
minExclusive, xs:minInclusive, xs:pattern, xs:whiteSpace

The xs:duration datatype is used to represent a period of time.
Because periods of time may range from seconds to centuries, it
uses a very flexible notation. A duration that includes a year,
month, day, hour, minute, and seconds is written as
PnYnMnDTnHnMnS, with a possible leading minus sign to indicate
negative durations. The number preceding Y is the number of
years, the number preceding the first M is months, and the number
preceding the D is days. The T separator marks the start of time in
the duration; the number preceding H is hours, the number
preceding M is minutes, and the number preceding S is seconds
and may include a decimal part. The P is always necessary, and
the T is necessary if the duration uses units smaller than days.
Thus, P2Y is two years. P2M is two months, and PT2M is two
minutes. Seven years, four months, six days, thirteen hours,
twenty minutes, and four seconds could be written as
P7Y4M6DT13H20M4S. Unlike the date and time types, no leading
zeros are required.

Comparing durations is difficult, but as long as durations use only
year and month or day, hour, minute, and second, it is possible to
reliably compare them.

xs:ENTITIES

90 | XML Pocket Reference

xs:ENTITIES

Facets

xs:enumeration, xs:length, xs:maxLength, xs:minLength, xs:
whiteSpace

The xs:ENTITIES datatype is provided for compatibility with
XML 1.0 DTDs. Its value should be a whitespace-separated list of
unparsed entity names. To maintain compatibility with DTDs,
this type should be used only for attributes. (Schemas can’t
define unparsed entities, so this type must be used in concert
with a DTD.)

xs:ENTITY

Facets

xs:enumeration, xs:length, xs:maxLength, xs:minLength, xs:
pattern, xs:whiteSpace

The xs:ENTITY datatype is provided for compatibility with XML 1.0
DTDs. Its value should be an unparsed entity name. To maintain
compatibility with DTDs, this type should be used only for
attributes. (Schemas can’t define unparsed entities, so this type
must be used in concert with a DTD.)

xs:float

Facets

xs:enumeration, xs:maxExclusive, xs:maxInclusive, xs:
minExclusive, xs:minInclusive, xs:pattern, xs:whiteSpace

The xs:float type represents a single-precision 32-bit IEEE 754
floating-point number. In addition to the digits 0–9 (and only
those digits, not other Unicode digits), a leading plus or minus
sign, and a single decimal point, xs:double also accepts scientific
notation and the values INF (infinity), -INF (negative infinity), and
NaN (not a number). If scientific notation is used, the mantissa may
be a decimal but the exponent must be an integer. No preceding
plus sign may be used on the exponent, but a preceding minus

xs:gMonth

W3C XML Schema | 91

sign is acceptable. An E or an e separates the mantissa and the
exponent. Legal values include 3.14159265358, -2.32E90, 1.7E12,
1.7E-12, 0, and -0.

xs:gDay

Facets

xs:enumeration, xs:maxExclusive, xs:maxInclusive, xs:
minExclusive, xs:minInclusive, xs:pattern, xs:whiteSpace

The xs:gDay type stores a day of the month in the format ---DD,
where DD is the day (01–31). Acceptable values include ---25, ---
15, and ---01.

A time zone relative to Coordinated Universal Time, also known
as Greenwich Time or UTC, may also be added. If there is a time
zone, the format is ±hh:mm, wherein a plus or minus sign is
followed by a two-digit value for hours, then a colon, and then a
two-digit value for minutes. You can also use Z in place of the time
zone, indicating UTC. Valid xs:gDay values with a time zone
include ---25+05:00, ---15-10:30, and ---01Z.

xs:gMonth

Facets

xs:enumeration, xs:maxExclusive, xs:maxInclusive, xs:
minExclusive, xs:minInclusive, xs:pattern, xs:whiteSpace

The xs:gMonth type stores a month (identified by number) in the
format --MM, where MM is the month (01–12). Acceptable values
include --02, --12, and --01.

A time zone relative to Coordinated Universal Time, also known
as Greenwich Time or UTC, may also be added. If there is a time
zone, the format is ±hh:mm, wherein a plus or minus sign in
followed by a two-digit value for hours, then a colon, and then a
two-digit value for minutes. You can also use Z in place of the time
zone, indicating UTC. Valid xs:gMonth values with a time zone
include --02+05:00, --12-10:30, and --01Z.

xs:gMonthDay

92 | XML Pocket Reference

xs:gMonthDay

Facets

xs:enumeration, xs:maxExclusive, xs:maxInclusive, xs:
minExclusive, xs:minInclusive, xs:pattern, xs:whiteSpace

The xs:gMonthDay type stores a day/month combination in the
format --MM-DD, where MM is the month (01–12) and DD is the day
(01–31). Acceptable values include --02-27, --12-25, and --01-04.

A time zone relative to Coordinated Universal Time, also known
as Greenwich Time or UTC, may also be added. If there is a time
zone, the format is ±hh:mm, wherein a plus or minus sign is
followed by a two-digit value for hours, then a colon, and then a
two-digit value for minutes. You can also use Z in place of the time
zone, indicating UTC. Valid xs:gMonthDay values with a time zone
include --02-27+05:00, --12-25-10:30, and --01-04Z.

xs:gYear

Facets

xs:enumeration, xs:maxExclusive, xs:maxInclusive, xs:
minExclusive, xs:minInclusive, xs:pattern, xs:whiteSpace

The xs:gYear type stores a year in the format CCYY, where CC is the
century and YY is the year (00–99). The overall year must include
at least four digits and may have a preceding negative sign.
Acceptable values include 1970, -0044, and 0801.

A time zone relative to Coordinated Universal Time, also known
as Greenwich Time or UTC, may also be added. If there is a time
zone, the format is ±hh:mm, wherein a plus or minus sign is
followed by a two-digit value for hours, then a colon, and then a
two-digit value for minutes. You can also use Z in place of the time
zone, indicating UTC. Valid xs:gYear values with a time zone
include 1970+05:00, 0044-10:30, and 0801Z.

xs:ID

W3C XML Schema | 93

xs:gYearMonth

Facets

xs:enumeration, xs:maxExclusive, xs:maxInclusive, xs:
minExclusive, xs:minInclusive, xs:pattern, xs:whiteSpace

The xs:gYearMonth type stores a year/month combination in the
format CCYY-MM, where CC is the century, YY is the year (00–99),
and MM is the month (01–12). The overall year must include at
least four digits and may have a preceding negative sign. Acceptable
year/month combinations include 1970-11, 0044-03, and 0801-04.

A time zone relative to Coordinated Universal Time, also known
as Greenwich Time or UTC, may also be added. If there is a time
zone, the format is ±hh:mm, wherein a plus or minus sign is
followed by a two-digit value for hours, then a colon, and then a
two-digit value for minutes. You can also use Z in place of the time
zone, indicating UTC. Valid xs:gYearMonth values with a time
zone include 1970-11+05:00, 0044-03-10:30, and 0801-04Z.

xs:hexBinary

Facets

xs:enumeration, xs:length, xs:maxLength, xs:minLength, xs:
pattern, xs:whiteSpace

The xs:hexBinary type is designed to contain binary information
encoded as a set of hexadecimal values. The xs:hexBinary values
are lists of representations of bytes, each one represented as a two-
digit hexadecimal number, so the only characters that may appear
in xs:hexBinary values are the numbers 0–9 and the letters A–F and
a–f.

xs:ID

Facets

xs:enumeration, xs:length, xs:maxLength, xs:minLength, xs:
pattern, xs:whiteSpace

The xs:ID type provides compatibility with the ID attribute type
from XML 1.0 DTDs. Like those IDs, the contents of the xs:ID

xs:IDREF

94 | XML Pocket Reference

type must start with a letter and contain letters, digits, under-
scores, or colons, and the value must be unique within the
document. (If you need more sophisticated tests of uniqueness,
use the xs:key, xs:keyref, and xs:unique structures.)

xs:IDREF

Facets

xs:enumeration, xs:length, xs:maxLength, xs:minLength, xs:
pattern, xs:whiteSpace

The xs:ID type provides compatibility with the IDREF attribute
type from XML 1.0 DTDs. Like those IDREFs, the contents of the
xs:IDREF type must start with a letter and contain letters, digits,
underscores, or colons, and the value must match an xs:ID value
elsewhere in the document.

xs:IDREFS

Facets

xs:enumeration, xs:length, xs:maxLength, xs:minLength, xs:
whiteSpace

The xs:ID type provides compatibility with the IDREFS attribute
type from XML 1.0 DTDs. Like that IDREFS type, the contents of
the xs:IDREFS type must be a whitespace-separated list of values,
each of which starts with a letter and contains letters, digits,
underscores, or colons, and each of which must match an xs:ID
value elsewhere in the document.

xs:int

Facets

xs:enumeration, xs:fractionDigits, xs:maxExclusive, xs:
maxInclusive, xs:minExclusive, xs:minInclusive, xs:pattern,
xs:totalDigits, xs:whiteSpace

The xs:int type stores 4-byte integer values between –2147483648
and 2147483647. An optional leading plus or minus sign is
permitted, but decimal points are not. Legal values include
-2142203700, -1294, 94, 0, 97, and +2147483647.

xs:long

W3C XML Schema | 95

xs:integer

Facets

xs:enumeration, xs:fractionDigits, xs:maxExclusive, xs:
maxInclusive, xs:minExclusive, xs:minInclusive, xs:pattern,
xs:totalDigits, xs:whiteSpace

The xs:integer type represents a base-10 number without any
decimal points or fractional digits. Values may include the digits
0–9 (and only those digits, not other Unicode digits) and a leading
plus or minus sign. No decimal point may appear. Acceptable
values include 3.1415926535897932384626433832795, -20, +25, 02, 0,
-0, and +0.

xs:language

Facets

xs:enumeration, xs:length, xs:maxLength, xs:minLength, xs:
pattern, xs:whiteSpace

The xs:language type contains an RFC 1766 language code that
corresponds to the acceptable values for the xml:lang attribute.
Like xml:lang, the schema validator doesn’t test whether or not
the value corresponds to a real language. That task is left to the
application.

xs:long

Facets

xs:enumeration, xs:fractionDigits, xs:maxExclusive, xs:
maxInclusive, xs:minExclusive, xs:minInclusive, xs:pattern,
xs:totalDigits, xs:whiteSpace

The xs:long type stores 8-byte integer values between the numbers
–9223372036854775808 and 9223372036854775807. An optional
leading plus or minus sign is permitted, but decimal points are not.
Legal values include -22337203685477580, -3492294, 904, 0, 439562,
and +9223372036854775806.

xs:Name

96 | XML Pocket Reference

xs:Name

Facets

xs:enumeration, xs:length, xs:maxLength, xs:minLength, xs:
pattern, xs:whiteSpace

The xs:Name type contains character strings that are legal XML 1.0
names, starting with a letter and otherwise consisting of letters,
digits, ideographic characters, underscores, hyphens, periods, and
colons. (XML 1.1 supports a wider range of characters in names,
but XML Schema 1.0 supports the XML 1.0 rules.) Legal values
include h1223, myName, my_Name:12, silliness, money-owed, and
this.idea.

xs:NCName

Facets

xs:enumeration, xs:length, xs:maxLength, xs:minLength, xs:
pattern, xs:whiteSpace

The xs:NCName type contains character strings that are legal but non-
colonized XML 1.0 names, starting with a letter and otherwise
consisting of letters, digits, ideographic characters, underscores,
hyphens, and periods. The colon is prohibited. (XML 1.1 supports
a wider range of characters in names, but XML Schema 1.0 only
supports the XML 1.0 rules.) Legal values include h1223, myName, my_
Name12, silliness, money-owed, and this.idea.

xs:negativeInteger

Facets

xs:enumeration, xs:fractionDigits, xs:maxExclusive, xs:
maxInclusive, xs:minExclusive, xs:minInclusive, xs:pattern,
xs:totalDigits, xs:whiteSpace

The xs:negativeInteger type represents a negative base-10
number without any decimal points or fractional digits. Values
may include the digits 0–9 (and only those digits, not other

xs:NMTOKENS

W3C XML Schema | 97

Unicode digits) and must include a leading minus sign. No
decimal point may appear, and the value must be less than zero.
Acceptable values include -7932384626433832795, -212320, -20,
and -1.

xs:NMTOKEN

Facets

xs:enumeration, xs:length, xs:maxLength, xs:minLength, xs:
pattern, xs:whiteSpace

The xs:NMTOKEN type corresponds to the XML 1.0 DTDs NMTOKEN
attribute type. Its values may contain character strings that are
legal XML 1.0 name tokens, consisting of letters, digits, ideo-
graphic characters, underscores, hyphens, periods, and colons.
(XML 1.1 supports a wider range of characters in names, but
XML Schema 1.0 supports the XML 1.0 rules.) Legal values
include h1223, 3412_32, my_Name:12, silliness, money-owed, and
this.idea.

xs:NMTOKENS

Facets

xs:enumeration, xs:length, xs:maxLength, xs:minLength, xs:
whiteSpace

The xs:NMTOKENS type corresponds to the XML 1.0 DTDs attribute
type NMTOKENS. Its value is a whitespace-separated list of xs:NMTOKEN
values, which may contain character strings that are legal XML 1.0
name tokens, consisting of letters, digits, ideographic characters,
underscores, hyphens, periods, and colons. (XML 1.1 supports a
wider range of characters in names, but XML Schema 1.0 only
supports the XML 1.0 rules.)

xs:nonNegativeInteger

98 | XML Pocket Reference

xs:nonNegativeInteger

Facets

xs:enumeration, xs:fractionDigits, xs:maxExclusive, xs:
maxInclusive, xs:minExclusive, xs:minInclusive, xs:pattern,
xs:totalDigits, xs:whiteSpace

The xs:nonNegativeInteger type represents a positive (or zero)
base-10 number without any decimal points or fractional digits.
Values may include the digits 0–9 (and only those digits, not other
Unicode digits) and, optionally, a leading plus sign. No decimal
point may appear, and the value must be zero or more. Accept-
able values include 793234643383, 212320, 1, and 0.

xs:nonPositiveInteger

Facets

xs:enumeration, xs:fractionDigits, xs:maxExclusive, xs:
maxInclusive, xs:minExclusive, xs:minInclusive, xs:pattern,
xs:totalDigits, xs:whiteSpace

The xs:nonPositiveInteger type represents a negative (or zero)
base-10 number without any decimal points or fractional digits.
Values may include the digits 0–9 (and only those digits, not other
Unicode digits) and must include a leading minus sign. No
decimal point may appear, and the value must be zero or less.
Acceptable values include -793234643383, -212320, -1, and 0.

xs:normalizedString

Facets

xs:enumeration, xs:length, xs:maxLength, xs:minLength, xs:
pattern, xs:whiteSpace

The xs:normalizedString type is just like xs:string except that
the xs:whiteSpace facet is fixed to replace. This means that ordi-
nary spaces replace all the tabs, line feeds, and carriage returns.

xs:QName

W3C XML Schema | 99

xs:NOTATION

Facets

xs:enumeration, xs:length, xs:maxLength, xs:minLength, xs:
pattern, xs:whiteSpace

The xs:NOTATION datatype is part of a mechanism comparable to
but incompatible with NOTATION in XML 1.0 DTDs. Its value
should be a namespace-qualified notation name used elsewhere in
an xs:notation declaration.

xs:positiveInteger

Facets

xs:enumeration, xs:fractionDigits, xs:maxExclusive, xs:
maxInclusive, xs:minExclusive, xs:minInclusive, xs:pattern,
xs:totalDigits, xs:whiteSpace

The xs:positiveInteger type represents a positive base-10
number without any decimal points or fractional digits. Values
may include the digits 0–9 (and only those digits, not other
Unicode digits) and, optionally, a leading plus sign. No decimal
point may appear, and the value must be greater than zero.
Acceptable values include 7932846233832795, 212320, 20, and 1.

xs:QName

Facets

xs:enumeration, xs:length, xs:maxLength, xs:minLength, xs:
pattern, xs:whiteSpace

The xs:QName type is designed to hold namespace-qualified names
as defined in Namespaces in XML. It uses the same set of charac-
ters as xs:Name, but its value (which may or may not contain a
prefix and a colon) is treated as if it were an element name in the
current context of the document where it appears; effectively, the
default namespace declaration is used if no prefix is included. The
schema processor will report both the namespace URI and the
local name to the receiving application.

xs:short

100 | XML Pocket Reference

xs:short

Facets

xs:enumeration, xs:fractionDigits, xs:maxExclusive, xs:
maxInclusive, xs:minExclusive, xs:minInclusive, xs:pattern,
xs:totalDigits, xs:whiteSpace

The xs:short type stores 2-byte integer values between –32768
and 32767. An optional leading plus or minus sign is permitted,
but decimal points are not. Legal values include -32700, -1294, 94,
0, 97, and +12700.

xs:string

Facets

xs:enumeration, xs:length, xs:maxLength, xs:minLength, xs:
pattern, xs:whiteSpace

The xs:string type is one of the most basic in XML Schema and is
a common foundation for derived types. The xs:string type can
contain any legal XML characters, though quotes and the apos-
trophe, as well as <, >, and & may need to be escaped to avoid
breaking the well-formedness of the document.

xs:time

Facets

xs:enumeration, xs:maxExclusive, xs:maxInclusive, xs:
minExclusive, xs:minInclusive, xs:pattern, xs:whiteSpace

The xs:time type specifies a time of day. Its contents appear in the
format hh:mm:ss, where hh is the hour (00–23), mm is the minute
(00–59) and ss is the second (00–59, plus a possible decimal
part). Acceptable times include 04:03:20, 12:00:00, and 18:47:49.

A time zone relative to Coordinated Universal Time, also known
as Greenwich Time or UTC, may also be added. If there is a time
zone, the format is ±hh:mm, wherein a plus or minus sign is

xs:unsignedInt

W3C XML Schema | 101

followed by a two-digit value for hours, then a colon, and then a
two-digit value for minutes. You can also use Z in place of the time
zone, indicating UTC. Valid times with a time zone include 04:03:
20+05:00, 12:00:00-10:30, and 18:47:49Z.

xs:token

Facets

xs:enumeration, xs:length, xs:maxLength, xs:minLength, xs:
pattern, xs:whiteSpace

The xs:normalizedString type is just like xs:string except that
with this type, all the tabs, line feeds, and carriage returns are
replaced with single spaces, and leading and trailing spaces are
trimmed.

xs:unsignedByte

Facets

xs:enumeration, xs:fractionDigits, xs:maxExclusive, xs:
maxInclusive, xs:minExclusive, xs:minInclusive, xs:pattern,
xs:totalDigits, xs:whiteSpace

The xs:unsignedByte type stores integer values between 0 and
255. An optional leading plus sign is permitted, but decimal
points are not. Legal values include 255, 12, 0, 97, and +127.

xs:unsignedInt

Facets

xs:enumeration, xs:fractionDigits, xs:maxExclusive, xs:
maxInclusive, xs:minExclusive, xs:minInclusive, xs:pattern,
xs:totalDigits, xs:whiteSpace

The xs:unsignedInt type stores integer values between 0 and
4294967295. An optional leading plus sign is permitted, but
decimal points are not. Legal values include 42921132, 12, 0, 97,
and +0020221.

xs:unsignedLong

102 | XML Pocket Reference

xs:unsignedLong

Facets

xs:enumeration, xs:fractionDigits, xs:maxExclusive, xs:
maxInclusive, xs:minExclusive, xs:minInclusive, xs:pattern,
xs:totalDigits, xs:whiteSpace

The xs:unsignedLong type stores integer values between 0 and
18446744073709551615. An optional leading plus sign is
permitted, but decimal points are not. Legal values include
18446744073709551615, 12, 0, 97, and +002022232121.

xs:unsignedShort

Facets

xs:enumeration, xs:fractionDigits, xs:maxExclusive, xs:
maxInclusive, xs:minExclusive, xs:minInclusive, xs:pattern,
xs:totalDigits, xs:whiteSpace

The xs:unsignedShort type stores integer values between 0 and
65535. An optional leading plus sign is permitted, but decimal
points are not. Legal values include 65534, 12231, 0, 97, and
+12470.

XML Schema Constraining Facets
The XML Schema Part 2: Datatypes specification defines both
fundamental facets and constraining facets. Fundamental fac-
ets (equal, ordered, bounded, cardinality, and numeric) are
built into the definitions of the predefined datatypes and
aren’t available for you to use in creating your own schemas.
Constraining facets, on the other hand, allow you to specify
more exactly the values or kinds of values may be stored in your
schema components. Applying these facets in xs:restriction
elements allows you to create more precise types than those
that come built into XML Schema itself. Many of these facets
apply only to particular types— for instance, xs:fractionDigits
wouldn’t make much sense applied to strings.

xs:enumeration

W3C XML Schema | 103

All facet elements may contain xs:annotation child elements
and have attributes outside the XML Schema namespace.
They also share the fixed and id attributes. When the fixed
attribute is set to true, the given facet cannot be modified
during later restriction. The id attribute is useful if you’re
creating schemas automatically and need guaranteed unique
identifiers on every component.

Also, some facets cannot be applied simultaneously with oth-
ers. If you need to set both, you’ll need to use two separate
xs:restriction elements.

xs:enumeration
Allows you to specify a list of values as the only acceptable values for a given type

Applies to

All datatypes except xs:boolean

Attributes

value
Any simple type containing values consistent with the
datatype for which they are being enumerated

Operation

Unlike the other facets, the enumeration element is used repeat-
edly within an xs:restriction element to specify allowed values.
For example, to specify a type that contains the pigment primary
colors red, blue, and yellow, you might write:

<xs:simpleType name="pigmentPrimaries">
 <xs:restriction base= "xs:token">
 <xs:enumeration value="red" />
 <xs:enumeration value="blue" />
 <xs:enumeration value="yellow" />
 </xs:restriction>
</xs:simpleType>

If someone confused his light primaries with his pigment prima-
ries and tried to enter green, the validator would reject that value.

xs:fractionDigits

104 | XML Pocket Reference

This facet cannot be fixed. Types derived from an enumerated
type must be defined as subsets of the enumerated possibilities of
the original type.

xs:fractionDigits
Allows you to specify the number of significant digits to the right of the decimal separator

Applies to

xs:decimal

Attributes

fixed
An xs:boolean; true or false, defaulting to false

value
An xs:nonNegativeInteger

Operation

The number in value specifies the number of significant digits
allowed after the decimal point. Despite the presence of other
numeric types with fractional values, xs:fractionDigits is only
available for use with xs:decimal.

xs:length
Allows you to specify the precise length (in characters, bytes, or list items) of a given value

Applies to

xs:anyURI, xs:base64binary, xs:ENTITIES, xs:ENTITY, xs:hexBinary,
xs:ID, xs:IDREF, xs:IDREFS, xs:language, xs:Name, xs:NCName, xs:
NMTOKEN, xs:NMTOKENS, xs:normalizedString, xs:NOTATION, xs:QName,
xs:string, xs:token

Attributes

value
An xs:nonNegativeInteger

xs:maxExclusive

W3C XML Schema | 105

Operation

For string values, the number in value specifies the number of
Unicode characters allowed in the string. The number of Unicode
characters is counted after whitespace processing is completed,
per the rules of the datatype being constrained and the xs:
whitespace facet.

For the xs:hexBinary and xs:base64Binary types, the value speci-
fies the number of bytes encoded. When used in lists, the xs:
length facet constrains the number of items in the list.

You cannot specify xs:length at the same time you specify xs:
maxLength or xs:minLength.

xs:maxExclusive
Allows you to specify a maximum value below which all data in the type must remain

Applies to

xs:byte, xs:date, xs:dateTime, xs:decimal, xs:double, xs:duration,
xs:float, xs:gDay, xs:gMonth, xs:gMonthDay, xs:gYear, xs:
gYearMonth, xs:int, xs:integer, xs:long, xs:negativeInteger, xs:
nonNegativeInteger, xs:nonPositiveInteger, xs:positiveInteger,
xs:short, xs:time, xs:unsignedByte, xs:unsignedInt, xs:
unsignedLong, xs:unsignedShort

Attributes

value
An xs:nonNegativeInteger

Operation

For numeric values, the number in value specifies a number that
no contents of that type may equal or exceed. Date and time
values must be earlier than the specified xs:maxExclusive value.

You cannot specify xs:maxExclusive at the same time you specify
xs:maxInclusive.

xs:maxInclusive

106 | XML Pocket Reference

xs:maxInclusive
Allows you to specify a maximum value that all data in the type must be equal to or less than

Applies to

xs:byte, xs:date, xs:dateTime, xs:decimal, xs:double, xs:duration,
xs:float, xs:gDay, xs:gMonth, xs:gMonthDay, xs:gYear, xs:
gYearMonth, xs:int, xs:integer, xs:long, xs:negativeInteger, xs:
nonNegativeInteger, xs:nonPositiveInteger, xs:positiveInteger,
xs:short, xs:time, xs:unsignedByte, xs:unsignedInt, xs:
unsignedLong, xs:unsignedShort

Attributes

value
An xs:nonNegativeInteger

Operation

For numeric values, the number in value specifies a number that
no contents of that type may exceed. Date and time values must
be earlier than or equal to the specified xs:maxInclusive value.

You cannot specify xs:maxExclusive at the same time you specify
xs:maxInclusive.

xs:maxLength
Allows you to specify the maximum length (in characters, bytes, or list items) of a given value

Applies to

xs:anyURI, xs:base64binary, xs:ENTITIES, xs:ENTITY, xs:hexBinary,
xs:ID, xs:IDREF, xs:IDREFS, xs:language, xs:Name, xs:NCName, xs:
NMTOKEN, xs:NMTOKENS, xs:normalizedString, xs:NOTATION, xs:QName,
xs:string, xs:token

Attributes

value
An xs:nonNegativeInteger

xs:minExclusive

W3C XML Schema | 107

Operation

For string values, the number in value specifies the maximum
number of Unicode characters allowed in the string. The number
of Unicode characters is counted after whitespace processing is
completed per the rules of the datatype being constrained and the
xs:whitespace facet.

For the xs:hexBinary and xs:base64Binary types, the value speci-
fies the maximum number of bytes encoded. When used in lists,
the value constrains the number of items in the list.

You cannot specify xs:maxLength at the same time you specify xs:
length or xs:minLength.

xs:minExclusive
Allows you to specify a minimum value above which all data in the type must remain

Applies to

xs:byte, xs:date, xs:dateTime, xs:decimal, xs:double, xs:duration,
xs:float, xs:gDay, xs:gMonth, xs:gMonthDay, xs:gYear, xs:
gYearMonth, xs:int, xs:integer, xs:long, xs:negativeInteger, xs:
nonNegativeInteger, xs:nonPositiveInteger, xs:positiveInteger,
xs:short, xs:time, xs:unsignedByte, xs:unsignedInt, xs:
unsignedLong, xs:unsignedShort

Attributes

value
An xs:nonNegativeInteger

Operation

For numeric values, the number in value specifies a number that
no contents of that type may be equal to or less than. Date and
time values must be later than the specified xs:minExclusive
value.

You cannot specify xs:minExclusive at the same time you specify
xs:minInclusive.

xs:minInclusive

108 | XML Pocket Reference

xs:minInclusive
Allows you to specify a maximum value that all data in the type must be equal to or less than

Applies to

xs:byte, xs:date, xs:dateTime, xs:decimal, xs:double, xs:duration,
xs:float, xs:gDay, xs:gMonth, xs:gMonthDay, xs:gYear, xs:
gYearMonth, xs:int, xs:integer, xs:long, xs:negativeInteger, xs:
nonNegativeInteger, xs:nonPositiveInteger, xs:positiveInteger,
xs:short, xs:time, xs:unsignedByte, xs:unsignedInt, xs:
unsignedLong, xs:unsignedShort

Attributes

value
An xs:nonNegativeInteger

Operation

For numeric values, the number in value specifies a number that
no contents of that type may be below. Date and time values must
be later than or equal to the specified xs:minInclusive value.

You cannot specify xs:minExclusive at the same time you specify
xs:minInclusive.

xs:minLength
Allows you to specify the minimum length (in characters, bytes, or list items) of a given value

Applies to

xs:anyURI, xs:base64binary, xs:ENTITIES, xs:ENTITY, xs:hexBinary,
xs:ID, xs:IDREF, xs:IDREFS, xs:language, xs:Name, xs:NCName, xs:
NMTOKEN, xs:NMTOKENS, xs:normalizedString, xs:NOTATION, xs:QName,
xs:string, xs:token

Attributes

value
An xs:nonNegativeInteger

Operation

For string values, the number in value specifies the minimum
number of Unicode characters allowed in the string. The number

xs:pattern

W3C XML Schema | 109

of Unicode characters is counted after whitespace processing is
completed per the rules of the datatype being constrained and the
xs:whitespace facet.

For the xs:hexBinary and xs:base64Binary types, the value speci-
fies the minimum number of bytes encoded. When used in lists,
the value constrains the minimum number of items in the list.

You cannot specify xs:minLength at the same time you specify xs:
maxLength or xs:length.

xs:pattern
Allows you to specify value constraints using a regular expression

Applies to

All datatypes

Attributes

value
An xs:string containing a regular expression defined using the
rules set out in http://www.w3.org/TR/xmlschema-2/#regexs

Operation

During validation, the XML Schema processor compares the value
of the element or attribute against the regular expression specified
in the value attribute of the xs:pattern element. If the regular
expression matches the content, the content is valid; otherwise,
it’s not. (If multiple xs:pattern facets are specified, the content is
valid if it matches any of them.) The incredible flexibility of
regular expressions makes it possible to create a wide variety of
types that include mixed text and numbers, as well as types that
must have particular patterns of punctuation.

XML Schema regular expressions operate in much the same way
as regular expressions in Perl 5.6 and later, except that they
implicitly anchor the expressions at the head and tail. To avoid
this behavior, include the characters .* at the beginning or end of
the expression. Tables 2–4 list the most commonly used aspects of
XML Schema regular expressions as well as some Unicode-specific
material that’s much more frequently used in XML Schema
processing than in other uses of regular expressions.

xs:pattern

110 | XML Pocket Reference

TIP

You can use character and entity references in regular ex-
pressions. The XML parser will expand these references
before the XML Schema processor works on them. Don’t
use references as a form of escaping, however. That only
works for newlines, carriage returns, and tabs, and even
here the results are not very readable. Instead, use the es-
cape sequences listed in Table 3.

Table 2. Commonly used regular expression constructs

Pattern Meaning

(String) A value that matches String

String1 | String2 A value that matches String1 or String2

String? Zero or one occurrence of String

String* Zero or more occurrences of String

String+ One or more occurrences of String

String{num1, num2} A sequence of String occurrences, with num1 to
num2 repetitions

String{num1} A sequence of exactly num1 occurrences of String

String{num1,} A sequence of at least num1 occurrences of String

[char1char2...] One of the characters listed in the square brackets

[^char1char2...] One character not listed in the square brackets

[char1-char2] One character in the Unicode range between char1
and char2

[char1-char2-
[char3-char4]]

One character in the Unicode range between char1
andchar2, but excluding the range betweenchar3
and char4

xs:pattern

W3C XML Schema | 111

Table 3. Escape sequences and character classes for use in regular
expressions

Sequence Meaning

. Any valid XML character except newlines and carriage
returns

\n The newline character (#xA)

\r The return character (#xD)

\t The tab character (#x9)

\\ \

\| |

\. .

\- -

\^ ^

\? ?

* *

\+ +

\{ {

\} }

\((

\))

\[[

\]]

\s Spaces: space (#x20), tab (#x9), line feed (#xA), and
carriage return (#xD)

\S Anything that isn’t a space as defined above

\d Digits, including the Western 0–9 and digits in other
Unicode alphabets

\D Anything that isn’t a digit as defined above

\w A word character, which in Unicode means it isn’t
punctuation, separator, or other

\W Anything that isn’t a word character as defined above

xs:pattern

112 | XML Pocket Reference

\i Any character allowed at the start of an XML name—
generally letters and the underscore

\I Any character not allowed at the start of an XML name

\c Any character allowed in an XML name

\C Any character not allowed in an XML name

\p{UnicodeClass} Any character in the UnicodeClass (see Table 4)

\P{UnicodeClass} Any character not in the UnicodeClass (see Table 4)

\p{IsUnicodeBlock} Any character in the UnicodeBlock (see the list of
Unicode character blocks, later in this section)

\P{IsUnicodeBlock} Any character not in the UnicodeBlock (see the list of
Unicode character blocks, later in this section)

Table 4. Unicode character classes for use in regular
expressions

Class Contents

C All non-letters, non-symbols, non-separators, and non-numbers

Cc Control characters

Cf Format characters

Cn Code points which are not assigned

Co Code points in the Private Use Area

L All letters

Ll Lowercase letters

Lm Modifiers

Lo Other letters

Lt Titlecase letters

Lu Uppercase letters

M All marks

Mc Spacing combining marks

Me Enclosing marks

Table 3. Escape sequences and character classes for use in regular
expressions (continued)

Sequence Meaning

xs:pattern

W3C XML Schema | 113

To determine which characters fall into these categories, you’ll need
to refer to the Unicode specifications or the Unicode Character
Database, available from http://unicode.org/. Also, you cannot match
on the Cs class, which contains Unicode surrogates.

Mn Non-spacing marks

N All numbers

Nd Decimal digits

Nl Number letters

No Other numbers

P All punctuation characters

Pc Connector punctuation

Pd Dash punctuation

Pe Closed punctuation

Pf Final quotes

Pi Initial quotes

Po Other punctuation

Ps Open punctuation

S All symbols

Sc Currency symbols

Sk Modifier symbols

Sm Math symbols

So Other symbols

Z All separators

Zl Line separators

Zp Paragraph separators

Zs Spaces

Table 4. Unicode character classes for use in regular
expressions (continued)

Class Contents

xs:pattern

114 | XML Pocket Reference

Following is a list of Unicode character blocks:

AlphabeticPresentationForms HangulSyllables
Arabic Hebrew
ArabicPresentationForms-A Hiragana
ArabicPresentationForms-B IdeographicDescriptionCharacters
Armenian IPAExtensions
Arrows Kanbun
BasicLatin KangxiRadicals
Bengali Kannada
BlockElements Katakana
Bopomofo Khmer
BopomofoExtended Lao
BoxDrawing Latin-1Supplement
BraillePatterns LatinExtended-A
Cherokee LatinExtendedAdditional
CJKCompatibility LatinExtended-B
CJKCompatibilityForms LetterlikeSymbols
CJKCompatibilityIdeographs Malayalam
CJKRadicalsSupplement MathematicalOperators
CJKSymbolsandPunctuation MiscellaneousSymbols
CJKUnifiedIdeographs MiscellaneousTechnical
CJKUnifiedIdeographsExtensionA Mongolian
CombiningDiacriticalMarks Myanmar
CombiningHalfMarks NumberForms
CombiningMarksforSymbols Ogham
ControlPictures OpticalCharacterRecognition
CurrencySymbols Oriya
Cyrillic PrivateUse
Devanagari Runic
Dingbats Sinhala
EnclosedAlphanumerics SmallFormVariants
EnclosedCJKLettersandMonths SpacingModifierLetters
Ethiopic Specials
GeneralPunctuation SuperscriptsandSubscripts
GeometricShapes Syriac
Georgian Tamil
Greek Telugu

xs:whiteSpace

W3C XML Schema | 115

xs:totalDigits
Allows you to specify the number of significant digits used in a value

Applies to

xs:byte, xs:decimal, xs:int, xs:integer, xs:long, xs:negativeInteger,
xs:nonNegativeInteger, xs:nonPositiveInteger, xs:positiveInteger,
xs:short, xs:time, xs:unsignedByte, xs:unsignedInt, xs:unsignedLong,
xs:unsignedShort

Attributes

value
An xs:nonNegativeInteger

Operation

The number in value specifies the number of significant digits
allowed in the number contained by the type. Despite the pres-
ence of other numeric types, xs:totalDigits is only available for
use with xs:decimal and types containing integer values.

xs:whiteSpace
Allows you to specify how whitespace processing should be performed on the contents of
a type

Applies to

xs:normalizedString, xs:string

Attributes

value
One of preserve, replace, or collapse

GreekExtended Thaana
Gujarati Thai
Gurmukhi Tibetan
HalfwidthandFullwidthForms UnifiedCanadianAboriginalSyllabics
HangulCompatibilityJamo YiRadicals
HangulJamo YiSyllables

xs:whiteSpace

116 | XML Pocket Reference

Operation

This facet determines how the schema processor will report
whitespace contained in string values. If the value attribute is set
to preserve, all whitespace will be kept unchanged. If the value
attribute is set to replace, all whitespace characters—including
#x9 (tab), #xA (line feed), #xD (carriage return), and #x20 (space)—
will be replaced with space characters. If the value attribute is set
to collapse, every sequence of whitespace characters will be
replaced with a single space.

Datatypes may also perform their own whitespace processing, but
once whitespace is discarded through replace or collapse, which
is the case for all types except xs:string and xs:normalizedString,
it cannot be recovered.

XML Schema Attributes for Use in Instance
Documents
While many developers create XML Schemas and use them
to validate all documents which come through a given appli-
cation, there are times when applications may prefer to work
with information stored in the document instance, much as
the DOCTYPE declaration of an XML document identifies
the DTD against which that document should be validated
and may include extra information extending that DTD.
XML Schema supports both instance document information
that points to external schemas for validation and two pieces
that let document parts specify more precisely what their
contents are.

All of these attributes are in the http://www.w3.org/2001/
XMLSchema-instance namespace. There is no mechanism in
XML Schema for constraining where these attributes may
appear. In some sense, though they appear in a document
instance that is validated with an XML Schema, these
attributes are more document-specific supplements to the
schema processing than they are parts of the document.

xsi:type

W3C XML Schema | 117

xsi:nil

The xsi:nil attribute is used to permit cases in which an element
explicitly indicates that it doesn’t have any content. If an empty
element includes an xsi:nil="true" attribute, and if the declara-
tion indicates that the element is nillable, the schema processor
will accept the element as valid even if the schema requires that
element to have content.

xsi:noNamespaceSchemaLocation

The xsi:noNamespaceSchemaLocation attribute gives the schema
processor a hint, which the processor may ignore, about where to
find a schema for the content of a document without a namespace.
The value of the attribute is a URI (or list of URIs) wherein a
schema for processing the document may be found.

xsi:schemaLocation

The xsi:schemaLocation attribute gives the schema processor a
hint, which the processor may ignore, about where to find a
schema for the content of a document that uses a particular
namespace. The value of the attribute is a list containing an even
number of URIs. The first URI of each pair is the namespace URI
to which the schema applies, while the second URI of each pair
identifies where to find a schema for processing the document.

xsi:type

The xsi:type attribute lets you define the type of an element
locally (in the document) rather than in the schema. As XML
Schema Part 1: Structures puts it, “An element information item
in an instance may, however, explicitly assert its type using the
attribute xsi:type.”

The value of the xsi:type attribute must be a QName, identifying
the type of the element. The type specified by xsi:type has to be a
subtype of the type that was declared for the element originally.
For the xsi:type declaration to work, a matching type must be
defined in the schema the validator is using. Most typically, the
xsi:type attribute is used to specify predefined types, but it isn’t
limited to that.

118 | XML Pocket Reference

RELAX NG
RELAX NG is a simple yet elegant schema language for XML. It was
developed at OASIS under the leadership of James Clark and Murata
Makoto and grew out of earlier efforts on the schema languages
TREX (by Clark) and RELAX (by Murata). After becoming an
OASIS committee specification in late 2001, RELAX NG was later
standardized under ISO’s Document Schema Definition Languages
(DSDL) effort as ISO/IEC 19757-2.

RELAX NG is easy to learn, easy to use, and is supported by a
broad variety of free tools. It can be expressed in XML syntax or
in a compact, non-XML syntax. Its use is certainly not as wide-
spread as W3C XML Schema, but RELAX NG continues to be a
favorite among XML experts.

The RELAX NG XML-syntax tutorial is at http://relaxng.org/tutorial-
20011203.html; the compact-syntax tutorial is at http://relaxng.org/
compact-tutorial-20030326.html; and the specification is at http://
relaxng.org/spec-20011203.html. For more information, see http://
relaxng.org and http://dsdl.org. Eric van der Vlist’s RELAX NG
(O’Reilly) is also an excellent resource (an online version is available
at http://books.xmlschemata.org/relaxng/). The following material is
intended for quick reference on usage and syntax. For a complete,
detailed reference, I recommend Chapters 17 and 18 of van der
Vlist’s RELAX NG.

The following RELAX NG reference is organized by XML element
name; an associated compact syntax is provided in an example for
each. The element names in headings are prefixed with rng: to
distinguish them from XML Schema elements with identical
names; however, the prefix is not normally necessary in common
usage, nor is it used in provided examples.

The datatypeLibrary and ns attributes are legal on all elements,
though in some instances they have no effect. datatypeLibrary
names the datatype library to be used in the schema, and ns speci-
fies the default namespace for either the element or attribute,
depending on context. It is common to specify the W3C XML
Schema datatype namespace (http://www.w3.org/2001/XMLSchema-
datatypes) as a datatype library. Compact syntax processors auto-
matically bind this namespace to the prefix xsd:.

rng:anyName

RELAX NG | 119

The RELAX NG namespace (http://relaxng.org/ns/structure/1.0) must
be declared in schemas using the XML syntax; however, it need not
be declared in the compact syntax, as compact syntax processors
handle it internally. The namespace declaration is left out of most of
the XML examples in order to reduce clutter.

When processed by a RELAX NG processor, elements and
attributes from foreign namespaces are discarded. This means you
can intermix elements or attributes from any namespace in
RELAX NG schemas, such as XHTML, which makes it easy to
add documentation to them.

Under the “Parents” heading, any element name in constant width
bold italic may be a parent in the context of a name class; all
elements named may be used in the context of a pattern. In this
part of the book, numbers preceded by a section sign (§) under
“See also” headings refer to sections in the RELAX NG XML-
syntax tutorial (http://relaxng.org/tutorial-20011203.html).

rng:anyName
Specifies a name pattern that matches any name in any namespace

XML syntax example
<grammar xmlns="http://relaxng.org/ns/structure/1.0">

<start>
 <ref name="any"/>
</start>

<define name="any">
 <element>
 <anyName/>
 <zeroOrMore>
 <choice>
 <attribute>
 <anyName/>
 </attribute>
 <text/>
 <ref name="any"/>
 </choice>
 </zeroOrMore>
 </element>
</define>

</grammar>

rng:attribute

120 | XML Pocket Reference

Compact syntax example
start = any
any = element * { (attribute * { text } | text | any)* }

Parents

attribute, choice, element, except

Description

The anyName element, when used as the child of an attribute or
element pattern, causes that pattern to match any element or
attribute name from any namespace in an instance. You can also
use anyName in conjunction with the except and nsName elements to
exclude names in a given namespace.

See also

§11, except, nsName

rng:attribute
Matches an attribute

XML syntax example
<element name="date">
 <attribute name="year"/>
 <attribute name="month"/>
 <attribute name="day"/>
</element>

Compact syntax example
element date {
 attribute year { text },
 attribute month { text },
 attribute day { text }
}

Attributes

name
An attribute name. If this name has a prefix, the namespace of
the attribute is the namespace bound to that schema; if not,
the attribute is in no namespace.

rng:choice

RELAX NG | 121

Parents

attribute, choice (() and |), define (name of pattern followed
by =), element, except (-), group (() and ,), interleave (&), list,
mixed, oneOrMore (+), optional (?), start (start followed by =),
zeroOrMore (*)

Description

The attribute pattern matches an attribute in an instance. If an
attribute element is empty, it is assumed to contain a text
pattern, so the following attribute patterns are equivalent:

<attribute name="greeting" />

<attribute name="greeting"><text/></attribute>

The name attribute is not required; you can specify a name with
the name child element, or a name class with an anyName, an nsName,
or a choice child element. In other words, instead of this:

<attribute name="date"/>

You could use this:

<attribute>
 <name>date</name>
</attribute>

However, you cannot use the name attribute and a name child
element at the same time; they are mutually exclusive. There is no
distinction between the name attribute and a name child element in
the compact syntax.

See also

§3, element, name

rng:choice
Matches one of a choice of patterns or name classes

XML syntax example
<choice>
 <element name="date"><text/></element>
 <element name="name"><text/></element>
 <element name="purpose"><text/></element>
</choice>

rng:data

122 | XML Pocket Reference

Compact syntax example
(element date { text }
 | element name { text }
 | element purpose { text })

Parents

attribute, choice, define, element, except, group, interleave,
list, mixed, oneOrMore, optional, start, zeroOrMore

Description

The choice pattern matches one of a set of patterns, such as
elements or attributes, or one of a set of name classes, such as
names in a given namespace.

See also

§2, group, interleave

rng:data
Matches data of a given datatype

XML syntax example
<element name="num">
 <data type="decimal"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-
 datatypes">
 <param name="minInclusive">0.0</param>
 <param name="maxInclusive">1.0</param>
 </data>
</element>

Compact syntax example
element num {
xsd:decimal { minInclusive = "0.0" maxInclusive = "1.0" }

}

Parents

attribute, choice (() and |), define (name of pattern followed
by =), element, except (-), group (() and ,), interleave (&), list,
mixed, oneOrMore (+), optional (?), start (start followed by =),
zeroOrMore (*)

rng:define

RELAX NG | 123

Attributes

type
A datatype from the datatype library specified with the
nearest datatypeLibrary attribute

Description

The data pattern matches any legal value of a specified datatype.
An external datatype library, such as the XML Schema datatype
library, defines the datatype. The datatype library is specified by
the value of the datatypeLibrary attribute. Child or descendent
elements inherit the value of datatypeLibrary; hence datatypeLibrary
is often specified on the document element. Datatypes can be
restricted using the param element. In the compact syntax, datatypes
are specified by a name with a prefix. If no value is given for
datatypeLibrary, RELAX NG defaults to a built-in datatype library
with only two types: string and token. You can remove a value or a
subtype from a datatype by using except.

See also

§5, except, list, param

rng:define
Defines a named pattern

XML syntax example
<grammar xmlns="http://relaxng.org/ns/structure/1.0">

<start>
 <ref name="greeting"/>
</start>

<define name="greeting">
 <choice>
 <element name="hello"><text/></element>
 <element name="hi"><text/></element>
 <element name="wazzup"><text/></element>
 </choice>
</define>

</grammar>

rng:define

124 | XML Pocket Reference

Compact syntax example
start = greeting
greeting = element hello { text }
 | element hi { text }
 | element wazzup { text }

Attributes

combine (|= for choice, &= for interleave)
Valid values are choice or interleave. choice means multiple
define elements are combined as a choice; interleave means
multiple define elements are combined by interleaving.

name
Specifies the name assigned to the pattern; must not have a
prefix.

Parents

div, grammar, include

Description

The define element defines a named pattern that can be refer-
enced by ref elsewhere in the schema or by parentRef to reference
a named pattern in a parent schema. If define is in an include, it
redefines any named pattern of the same name in the included
schema unless the combine attribute is used (if you want to
combine, you need to locate your new definitions outside of the
include pattern). If multiple child patterns are present, they are
treated as if wrapped by a group pattern. In the compact syntax,
definitions can constitute the whole of a schema, as if a grammar
pattern were present. Also in the compact syntax, choice and
interleave combined definitions are expressed using |= and &=
rather than simply =.

See also

§4, parentRef, ref

rng:div

RELAX NG | 125

rng:div
Groups definitions for documentation purposes

XML syntax example
<grammar xmlns:doc="http://simonstl.com/ns/doc"
xmlns="http://relaxng.org/ns/structure/1.0">

<start>
 <ref name="greeting"/>
</start>

<div doc:note="This section says 'hello.'">
<define name="greeting" combine="choice">
 <element name="hello"><text/></element>
</define>
</div>

<div doc:note="This section says 'hi.'">
<define name="greeting" combine="choice">
 <element name="hi"><text/></element>
</define>
</div>

</grammar>

Compact syntax example
namespace doc = "http://simonstl.com/ns/doc"

start = greeting
[doc:note = "This section says 'hello.'"]
div {
 greeting |= element hello { text }
}
[doc:note = "This section says 'hi.'"]
div {
 greeting |= element hi { text }
}

Parents

div, grammar

rng:element

126 | XML Pocket Reference

Description

The div element allows you to divide a list of definitions into
modules, primarily for documentation purposes. RELAX NG proces-
sors essentially disregard the div element. div elements may contain
other div elements.

See also

§12

rng:element
Matches an element

XML syntax example
<element name="description">
 <data type="string"/>
</element>

Compact syntax example
element description { string }

Attributes

name
An element name. If this name has a prefix, the namespace of
the element is the namespace bound to that schema. Other-
wise, the namespace is specified by the nearest enclosing ns
attribute.

Parents

attribute, choice (() and |), define (name of pattern followed
by =), element, except (-), group (() and ,), interleave (&), list,
mixed, oneOrMore (+), optional (?), start (start followed by =),
zeroOrMore (*)

Description

The element pattern matches an element in an instance. The name
attribute is not required—you can specify a name with the name
child element or specify a name class with an anyName, an nsName,
or a choice child element. In other words, instead of this:

<element name="description"/>

rng:empty

RELAX NG | 127

You could use this:

<element>
 <name>description</name>
</element>

However, you cannot use the name attribute and a name child
element at the same time; they are mutually exclusive. There is no
distinction between the name attribute and a name child element in
the compact syntax. If multiple child patterns are present, they are
treated as if wrapped by a group pattern.

See also

§1, attribute, name

rng:empty
Specifies that the content of an element is empty

XML syntax example
<element name="photo">
 <attribute name="source"/>
 <empty/>
</element>

Compact syntax example
element photo { attribute source { text }, empty }

Parents

attribute, choice (() and |), define (name of pattern followed
by =), element, except (-), group (() and ,), interleave (&), list,
mixed, oneOrMore (+), optional (?), start (start followed by =),
zeroOrMore (*)

Description

The empty pattern specifies empty content for an element. In
RELAX NG, an element is considered empty if it contains
whitespace only.

See also

§3, §10.1, element

rng:except

128 | XML Pocket Reference

rng:except
Excludes names or values

XML syntax example
<element name="digit"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-
 datatypes">
 <data type="nonPositiveInteger">
 <param name="minInclusive">-9</param>
 <except><value>0</value></except>
 </data>
</element>

Compact syntax example
element digit {
 xsd:nonPositiveInteger { minInclusive = "-9" } - ("0")
}

Parents

anyName, data, nsName

Description

The except element removes names from a name class or values
from a datatype. When used with data, the data element can
contain only other data, value, or choice elements. You can’t use
except to create an empty name class.

See also

§11, anyName, data, nsName, value

rng:externalRef
References an external schema

XML syntax example
<element name="date" xmlns="http://relaxng.org/ns/
 structure/1.0">
<interleave>
 <element name="year">
 <list>
 <choice>

rng:externalRef

RELAX NG | 129

 <value>2002</value>
 <value>2003</value>
 <value>2004</value>
 <value>2005</value>
 <value>2006</value>
 <value>2007</value>
 </choice>
 </list>
 </element>
 <externalRef href="month.rng"/>
 <externalRef href="day.rng"/>
</interleave>
</element>

Compact syntax example
element date {
 element year {
 list { "2002" | "2003" | "2004" | "2005" | "2006" |
 "2007" }
 }
 & external "month.rnc"
 & external "day.rnc"
}

Attributes

href
The location of the external schema

Parents

attribute, choice (() and |), define (name of pattern followed
by =), element, except (-), group (() and ,), interleave (&), list,
mixed, oneOrMore (+), optional (?), start (start followed by =),
zeroOrMore (*)

Description

The externalRef pattern references an external schema, in effect
replacing the instance of the externalRef element with the content
of the external schema. The external schema must contain a
pattern.

See also

§9.1, include, parentRef, ref

rng:grammar

130 | XML Pocket Reference

rng:grammar
Container for the definitions of named patterns

XML syntax example
<grammar xmlns="http://relaxng.org/ns/structure/1.0">

<start>
 <element name="cd">
 <attribute name="title"/>
 <optional>
 <attribute name="artist"/>
 </optional>
 <ref name="content"/>
 </element>
</start>

<define name="content">
 <element name="playlist">
 <oneOrMore>
 <element name="song"><text/></element>
 </oneOrMore>
 </element>
</define>

</grammar>

Compact syntax example
start = element cd {
 attribute title { text }, attribute artist { text }?,
 content
}
content = element playlist { element song { text }+ }

Parents

attribute, choice (() and |), define (name of pattern followed
by =), element, except (-), group (() and ,), interleave (&), list,
mixed, oneOrMore (+), optional (?), start (start followed by =),
zeroOrMore (*)

Description

A grammar pattern acts as a container for define elements, which
define named patterns, and for a start element, which specifies the

rng:group

RELAX NG | 131

pattern that must be matched in order for the grammar element to
be matched. (A grammar pattern may also contain only a section of
schema.) It is common to use a grammar pattern as the document
element of a RELAX NG schema, and in the compact syntax, a
grammar pattern is assumed if the schema consists of definitions
using =.

See also

§4, §9, §13, define, start

rng:group
Matches whatever its child patterns match in sequence

XML syntax example
<element name="mylist">
 <zeroOrMore>
 <element name="item">
 <choice>
 <element name="name">
 <text/>
 </element>
 <group>
 <element name="givenname">
 <text/>
 </element>
 <element name="familyname">
 <text/>
 </element>

</group>
 </choice>
 <element name="e-mail">
 <text/>
 </element>
 <optional>
 <element name="description">
 <text/>
 </element>
 </optional>
 </element>
 </zeroOrMore>
</element>

rng:include

132 | XML Pocket Reference

Compact syntax example
element mylist {
 element item {
 (element name { text }
 | (element givenname { text },
 element familyname { text })),
 element e-mail { text },
 element description { text }?
 }*
}

Parents

attribute, choice (() and |), define (name of pattern followed
by =), element, except (-), group (() and ,), interleave (&), list,
mixed, oneOrMore (+), optional (?), start (start followed by =),
zeroOrMore (*)

Description

The group pattern matches whatever its child patterns match in
the order specified (order is disregarded for attribute patterns).
Multiple patterns within define, oneOrMore, zeroOrMore, optional,
list, or mixed elements are treated as if they were wrapped by a
group pattern.

See also

§2, choice, interleave

rng:include
Includes another grammar into the current grammar

XML syntax example

include.rng

<grammar xmlns="http://relaxng.org/ns/structure/1.0">

<include href="type.rng"/>

<start combine="choice">
 <ref name="type" />
</start>

rng:include

RELAX NG | 133

<define name="type">
 <element name="type">
 <list>
 <choice>
 <value>html</value>
 <value>xhtml</value>
 <value>xml</value>
 </choice>
 </list>
 </element>
</define>

</grammar>

type.rng

<grammar xmlns="http://relaxng.org/ns/structure/1.0">

<start combine="choice">
 <element name="type">
 <list>
 <choice>
 <value>text</value>
 <value>other</value>
 </choice>
 </list>
 </element>
</start>

</grammar>

Compact syntax example

include.rnc

include "type.rnc"
start |= type
type = element type { list { "html" | "xhtml" | "xml" } }

type.rnc

start |= element type { list { "text" | "other" } }

rng:interleave

134 | XML Pocket Reference

Attributes

href
The location of the grammar to include

Parents

div, grammar

Description

The include element includes another grammar in the current one.
The included grammar must have a grammar element as the docu-
ment element. Its rules are effectively merged with the including
grammar. An include element may contain define elements that
override or are combined with definitions of the same name in the
including grammar.

See also

§9.3, grammar, start

rng:interleave
Matches patterns mixed in any order

XML syntax example
<grammar xmlns="http://relaxng.org/ns/structure/1.0">

<start>
 <element name="name">
 <ref name="name"/>
 </element>
</start>

<define name="name">
 <interleave>
 <element name="given">
 <text/>
 </element>
 <optional>
 <element name="middle">
 <text/>
 </element>
 </optional>
 <element name="family">

rng:list

RELAX NG | 135

 <text/>
 </element>
 </interleave>
</define>

</grammar>

Compact syntax example
start = element name { name }
name = element given { text }
& element middle { text }?
& element family { text }

Parents

attribute, choice (() and |), define (name of pattern followed
by =), element, except (-), group (() and ,), interleave (&), list,
mixed, oneOrMore (+), optional (?), start (start followed by =),
zeroOrMore (*)

Description

The interleave pattern interleaves its children. Its most common
use is for matching unordered content. interleave containing a
text node matches mixed content. An interleave element may
contain only one child element that directly or indirectly contains
a text element (this avoids combinatorial explosion). Also, it is
not possible to interleave data, value, or list patterns with child
element or text patterns. RELAX NG does not require determin-
istic content models as do XML Schema and DTDs.

See also

§8, group, mixed, oneOrMore, optional, zeroOrMore

rng:list
Breaks an element’s character content or an attribute value into whitespace-separated strings

XML syntax example
<element name="type" datatypeLibrary="http://www.w3.org/
 2001/XMLSchema-datatypes">
 <attribute name="values">
 <list>
 <data type="int"/>

rng:mixed

136 | XML Pocket Reference

 <data type="int"/>
 <data type="int"/>
 </list>
 </attribute>
 <empty/>
</element>

Compact syntax example
element type {
 attribute values { list { xsd:int, xsd:int, xsd:int } },
 empty
}

Parents

attribute, choice (() and |), define (name of pattern followed
by =), element, except (-), group (() and ,), interleave (&), list,
mixed, oneOrMore (+), optional (?), start (start followed by =),
zeroOrMore (*)

Description

The list pattern matches a whitespace-separated list of values in
an instance. list actually splits text nodes into tokens separated by
whitespace, which allows each token to be matched individually by
a RELAX NG pattern. If multiple child patterns are present, they
are treated as if they were wrapped by a group pattern. To match
possible multiple tokens, a list pattern should contain an explicit
or implicit group pattern, a zeroOrMore pattern, or a oneOrMore
pattern.

See also

§7, param, text, value

rng:mixed
Matches a pattern with mixed element and text content

XML syntax example
<element name="para">
 <mixed>
 <zeroOrMore>
 <choice>
 <element name="italic"><text/></element>

rng:name

RELAX NG | 137

 <element name="bold"><text/></element>
 </choice>
 </zeroOrMore>
 </mixed>
</element>

Compact syntax example
element para {
mixed { (element italic { text } | element bold {

 text })*}
}

Parents

attribute, choice (() and |), define (name of pattern followed
by =), element, except (-), group (() and ,), interleave (&), list,
mixed, oneOrMore (+), optional (?), start (start followed by =),
zeroOrMore (*)

Description

The mixed pattern matches a pattern of mixed text and elements in
an instance. It is a shortcut for using the interleave element with
a text element. The text element is assumed in mixed. If multiple
child patterns are present, they are treated as if they were wrapped
by a group pattern.

See also

§8, element, interleave, text

rng:name
Specifies a name pattern which matches a name

XML syntax example
<element>
 <name>desc</name>
 <optional><attribute name="type"/></optional>
 <text/>
</element>

Compact syntax example
element desc { attribute type { text }?, text }

rng:notAllowed

138 | XML Pocket Reference

Parents

attribute, choice, element, except

Description

The name element specifies a name class that contains a specific
name in a specific namespace. When used as the direct child of an
element or attribute pattern, it is an alternative for the name
attribute on element or attribute. However, you can’t use both at
the same time—they are mutually exclusive.

See also

§11, attribute, element

rng:notAllowed
Fails when matched

XML syntax example
<element name="abstract">
 <notAllowed/>
</element>

Compact syntax example
element abstract { notAllowed }

Parents

attribute, choice (() and |), define (name of pattern followed
by =), element, except (-), group (() and ,), interleave (&), list,
mixed, oneOrMore (+), optional (?), start (start followed by =),
zeroOrMore (*)

Description

The notAllowed pattern fails when matched. In grammars that will
be incorporated into larger grammars, notAllowed is useful for spec-
ifying an abstract pattern that may be overridden.

See also

§13

rng:nsName

RELAX NG | 139

rng:nsName
Specifies a name pattern that matches any name in a specified namespace

XML syntax example
<grammar xmlns="http://relaxng.org/ns/structure/1.0">

<start>
 <ref name="any"/>
</start>

<define name="any">
 <element>
 <nsName ns="http://simonstl.com/ns/address"/>
 <zeroOrMore>
 <choice>
 <attribute>
 <nsName ns="http://simonstl.com/ns/address"/>
 </attribute>
 <text/>
 <ref name="any"/>
 </choice>
 </zeroOrMore>
 </element>
</define>

</grammar>

Compact syntax example
namespace ad = "http://simonstl.com/ns/address"

start = any
any = element ad:* { (attribute ad:* { text } | text |
any)* }

Parents

attribute, choice, element, except

Description

The nsName element specifies a name pattern that matches any
name in a given namespace.

See also

§11, anyName, except, name

rng:oneOrMore

140 | XML Pocket Reference

rng:oneOrMore
Matches one or more occurrences of whatever its children match

XML syntax example
<element name="dates" datatypeLibrary="http://www.w3.org/
 2001/XMLSchema-datatype">
<oneOrMore>

 <element name="date">
 <data type="dateTime" />
 </element>
</oneOrMore>

</element>

Compact syntax example
element dates { element date { xsd:dateTime }+ }

Parents

attribute, choice (() and |), define (name of pattern followed
by =), element, except (-), group (() and ,), interleave (&), list,
mixed, oneOrMore (+), optional (?), start (start followed by =),
zeroOrMore (*)

Description

The oneOrMore pattern matches an instance with one or more chil-
dren defined in oneOrMore. In the compact syntax, oneOrMore is
represented by a plus sign, as in DTDs. oneOrMore cannot hold
attribute element definitions. If multiple child patterns are present,
they are treated as if they were wrapped by a group pattern.

See also

§1, optional, zeroOrMore

rng:optional
Matches zero or one occurrences of whatever its children match

XML syntax example
<element name="date"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-
 datatypes">

rng:param

RELAX NG | 141

 <optional>
 <element name="mydate">
 <data type="dateTime" />
 </element>
 </optional>
</element>

Compact syntax example
element date { element mydate { xsd:dateTime }? }

Parents

attribute, choice (() and |), define (name of pattern followed
by =), element, except (-), group (() and ,), interleave (&), list,
mixed, oneOrMore (+), optional (?), start (start followed by =),
zeroOrMore (*)

Description

The optional pattern matches a pattern of zero or one of what-
ever its children match. In the compact syntax, optional is
represented by a question mark, as in DTDs. If multiple child
patterns are present, they are treated as if they were wrapped by a
group pattern.

See also

§1, oneOrMore, zeroOrMore

rng:param
Specifies a parameter for a datatype

XML syntax example
<element name="digit"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-
 datatypes">
 <data type="int">
 <param name="minInclusive">0</param>
 <param name="maxInclusive">9</param>
 </data>
</element>

rng:param

142 | XML Pocket Reference

Compact syntax example
element digit { xsd:int { minInclusive = "0" maxInclusive
= "9" } }

Attributes

name
The name of the parameter (facet)

Parents

data

Description

The param element specifies a parameter that is associated with a
datatype specified by a parent data element. These parameters are
called facets in the context of XML Schema datatypes (Table 5).
The XML Schema datatype library is the most common datatype
library associated with a RELAX NG schema, though others are
possible.

Table 5. XML Schema datatype facets

Facet Description

length Length in units

minLength Minimum length in units

maxLength Maximum length in units

pattern A regular expression

minInclusive Minimum inclusive value

maxInclusive Maximum inclusive value

minExclusive Minimum exclusive value

maxExclusive Maximum exclusive value

totalDigits Total number of digits

fractionDigits Number of digits to the right of the decimal point

rng:parentRef

RELAX NG | 143

TIP

The enumeration and whitespace facets of XML Schema
datatypes are not supported by RELAX NG.

See also

§5, data, list, value

rng:parentRef
References a named pattern in a parent grammar

XML syntax example
<grammar xmlns="http://relaxng.org/ns/structure/1.0">

<start>
 <choice>
 <ref name="type" />
 <ref name="alt" />
 </choice>
</start>

<define name="type">
 <element name="type">
 <list>
 <choice>
 <value>html</value>
 <value>xhtml</value>
 <value>xml</value>
 </choice>
 </list>
 </element>
</define>

<define name="alt">
 <grammar>
 <start>
 <choice>
 <element name="method">

rng:parentRef

144 | XML Pocket Reference

 <list>
 <choice>
 <value>text</value>
 <value>other</value>
 </choice>
 </list>
 </element>
 <parentRef name="type"/>
 </choice>
 </start>
 </grammar>
</define>

</grammar>

Compact syntax example
start = type | alt
type = element type { list { "html" | "xhtml" | "xml" } }
alt = grammar { start =
 element method { list { "text" | "other" } } | parent
 type }

Parents

attribute, choice (() and |), define (name of pattern followed
by =), element, except (-), group (() and ,), interleave (&), list,
mixed, oneOrMore (+), optional (?), start (start followed by =),
zeroOrMore (*)

Description

The parentRef pattern references a named pattern in a parent
grammar—that is, a grammar that directly or indirectly contains
the current grammar. parentRef extends the scope of the current
grammar to definitions in the parent grammar.

See also

§13, externalRef, ref

rng:ref

RELAX NG | 145

rng:ref
Refers to a named pattern

XML syntax example
<grammar xmlns="http://relaxng.org/ns/structure/1.0">

<start>
 <ref name="torque"/>
</start>

<define name="torque">
 <element name="torque">
 <attribute name="value"/>
 <empty/>
 </element>
</define>

</grammar>

Compact syntax example
start = torque
torque = element torque { attribute value { text }, empty }

Parents

attribute, choice (() and |), define (name of pattern followed
by =), element, except (-), group (() and ,), interleave (&), list,
mixed, oneOrMore (+), optional (?), start (start followed by =),
zeroOrMore (*)

Description

The ref pattern refers to a named pattern in a define element. In
the compact syntax, a reference is made to a named pattern by
using the name of the pattern by itself. References may be recur-
sive (a ref within a named pattern may refer to itself) provided the
reference is directly or indirectly within an element pattern that is
contained in the definition.

See also

§4, define, externalRef, parentRef

rng:start

146 | XML Pocket Reference

rng:start
Specifies a pattern within a grammar that must be matched in order to match the whole
grammar element

XML syntax example
<grammar xmlns="http://relaxng.org/ns/structure/1.0">

<start>
 <element name="date">
 <ref name="date"/>
 </element>
</start>

<define name="date">
 <interleave>
 <element name="month">
 <text/>
 </element>
 <element name="day">
 <text/>
 </element>
 <element name="year">
 <text/>
 </element>
 </interleave>
</define>

</grammar>

Compact syntax example
start = element date { date }
date = element month { text }
 & element day { text }
 & element year { text }

Attributes

combine (|= for choice, &= for interleave)
Used when grammars are included with include. Valid values
are choice or interleave. choice means multiple start
elements are selected as one of a choice; interleave means
multiple start elements are interleaved.

rng:text

RELAX NG | 147

Parents

div, grammar, include

Description

The start element specifies the pattern that must be matched in
order for the grammar pattern that contains it to match. If the
grammar pattern is the document element of the RELAX NG
schema, then the start element specifies the document element of
the instance being validated.

See also

§4, §9, grammar, include

rng:text
Matches textual content in elements or attributes

XML syntax example
<element name="description">
 <attribute name="type"><text/></attribute>
 <text/>
</element>

Compact syntax example
element description { attribute type { text }, text }

Parents

attribute, choice (() and |), define (name of pattern followed
by =), element, except (-), group (() and ,), interleave (&), list,
mixed, oneOrMore (+), optional (?), start (start followed by =),
zeroOrMore (*)

Description

The text pattern matches textual content in elements or
attributes. It can match any amount of text (i.e., any number of
text nodes), including none at all; hence text, text?, text*, and
text+ all mean the same thing.

See also

§1, data, param, value

rng:value

148 | XML Pocket Reference

rng:value
Matches a specific value, including a value from a specified datatype

XML syntax example
<element name="answer">
 <choice>
 <value>yes</value>
 <value>no</value>
 <value>true</value>
 <value>false</value>
 </choice>
</element>

<element name="value" datatypeLibrary="http://www.w3.org/
 2001/XMLSchema-datatypes">
 <choice>
<value type="string">one</value>

 <value type="integer">1</value>
 <value type="decimal">1.0</value>
 </choice>
</element>

Compact syntax example
element answer { "yes" | "no" | "true" | "false" }

element value { xsd:string "one" | xsd:integer "1" | xsd:
decimal "1.0" }

Attributes

type
A datatype from the datatype library that is specified with the
nearest datatypeLibrary attribute

Parents

attribute, choice (() and |), define (name of pattern followed
by =), element, except (-), group (() and ,), interleave (&), list,
mixed, oneOrMore (+), optional (?), start (start followed by =),
zeroOrMore (*)

rng:zeroOrMore

RELAX NG | 149

Description

The value pattern matches a specific value from an enumeration
or, when using the type attribute, a value from a specific datatype.
The value of the type attribute may match any legal value of a
specified datatype library such as the XML Schema datatype
library. The datatype library is specified by the value of the
datatypeLibrary attribute. Child or descendant elements inherit
the value of datatypeLibrary; hence datatypeLibrary is often spec-
ified on the document element. Datatypes can be restricted using
the param element. In the compact syntax, the datatype is speci-
fied by a name with a prefix. If no value is given for
datatypeLibrary, RELAX NG defaults to a built-in datatype
library that has only two types: string and token.

See also

§6, data, list, param, text

rng:zeroOrMore
Matches zero or more occurrences of whatever its children match

XML syntax example
<element name="name">
 <element name="givenname"><text/></element>
 <zeroOrMore>
 <element name="middlename"><text/></element>
 </zeroOrMore>
 <element name="familyname"><text/></element>
</element>

Compact syntax example
element name {
 element givenname { text },
 element middlename { text }*,
 element familyname { text }
}

rng:zeroOrMore

150 | XML Pocket Reference

Parents

attribute, choice (() and |), define (name of pattern followed
by =), element, except (-), group (() and ,), interleave (&), list,
mixed, oneOrMore (+), optional (?), start (start followed by =),
zeroOrMore (*)

Description

The zeroOrMore pattern matches zero or more occurrences of its
children in a schema. In the compact syntax, zeroOrMore is repre-
sented by *, as in DTDs. If multiple child patterns are present,
they are treated as if they were wrapped by a group pattern.

See also

§1, oneOrMore, optional

Schematron
Schematron, which was developed by Rick Jelliffe, is a simple
yet powerful schema language for XML and has recently
become a an ISO standard candidate (ISO/IEC 19747-3; see
http://www.dsdl.org). Schematron uses rule-based validation
rather than the grammar-based validation used by XML
Schema and RELAX NG, among others. It uses expressions
written in XPath to precisely examine nodes in an instance,
thus becoming, as Jelliffe puts it, the “feather duster” that can
reach into corners where grammar-based languages cannot.
Schematron is good at testing for co-occurrence constraints—
that is, constraints based on the existence of a value or struc-
ture that in turn is based on the existence of another value or
structure.

The most common version of Schematron is 1.5. You can
obtain a reference implementation (an XSLT stylesheet) for
Version 1.5 from http://xml.ascc.net/schematron/1.5/. A vari-
ety of Schematron validators are available from Topologi
(http://www.topologi.com/). You can also get information on
the new ISO Schematron and its implementations from http://
www.schematron.com/.

Schematron | 151

An example of a Schematron 1.5 schema is shown in
Example 13.

Line 1 is simply an XML declaration. Line 2 is the root ele-
ment of the schema that contains a namespace declaration.
The namespace URI for Schematron 1.5 is http://www.ascc.
net/xml/schematron; alternatively, the namespace is http://
purl.oclc.org/dsdl/schematron for the new ISO Schematron.
The conventional prefix is sch:. Line 3 titles the schema with
human-readable text in an optional title element. This is
followed on line 4 by a pattern element.

A schema element must be followed by one or more pattern
elements. The pattern element, which lays out a set of rules
for validation, is followed by a rule element (line 5). rule ele-
ments list assertions about the given context. The context of
the horse element (from the instance being validated) is given
in the context attribute, which is required. Following this are
four assertions: the two assert elements (lines 6 and 7) state
constraints that are expected or required, and the two report
elements (lines 8 and 9), using a reversed logic of that of the
assert elements, identify exceptional data. A rule element

Example 13. horse.sch

1 <?xml version="1.0" encoding="US-ASCII"?>
2 <sch:schema xmlns:sch="http://www.ascc.net/xml/ schematron">
3 <sch:title>Horse schema</sch:title>
4 <sch:pattern>
5 <sch:rule context="horse">
6 <sch:assert test="@legs = '4'">Our horses should have

 4 legs.</sch:assert>
7 <sch:assert test="snip">Our horses should have a snip.

 </sch:report>
8 <sch:report test="blaze">This horse has a blaze.

 </sch:report>
9 <sch:report test="star">This horse has a star.

 </sch:report>
10 </sch:rule>
11 </sch:pattern>
12 </sch:schema>

sch:schema

152 | XML Pocket Reference

usually contains assert and report elements. (It must be fol-
lowed by one or more assert elements, one or more extends
elements, or one or more report elements.) Each assert or
report element specifies an assertion about the context in the
required test attribute. (An extends element identifies
abstract rules via an ID.) Here you have it—the basics of
Schematron.

The remainder of this section provides a brief reference for ISO
Schematron. Typically, to use Version 1.5 schemas as ISO sche-
mas, you need only make a namespace change from http://www.
ascc.net/xml/schematron to http://purl.oclc.org/dsdl/schematron.

The following elements allow common attributes: assert,
diagnostic, pattern, phase, report, rule, schema, title. Com-
mon optional attributes include the following: icon = URI; see
= URI; fpi = string; xml:lang = text; xml:space = ("preserve" |
"default"). The following elements cannot contain foreign ele-
ments and attributes (that is, elements and attributes that are
not in the Schematron namespace): emph, let, and param.
extends, name, and ns permit foreign attributes but not foreign
elements.

In this reference, the following items appear in parentheses:
“required” means the element or attribute must appear
where specified, + means the element may occur one or more
times, ? means the element or attribute may occur once or
not at all (i.e., it’s optional), and * means the element may
occur zero or more times.

Core Elements
These elements are listed in hierarchical order.

sch:schema
Top-level container element for a schema

Parents

none

sch:rule

Schematron | 153

Attributes

common; schemaVersion = string (?, non-empty); defaultPhase =
IDREF (?); version = string (?, non-empty); language = string (?,
non-empty)

Children

include (*), title (?), ns (*), p (*), let (*), phase (*), pattern (+),
diagnostics (?)

sch:pattern
A set of rules or constraints for the schema

Parents

schema

Attributes

common; id = ID (?); abstract = ("true" (if true, required of
course) | "false" (?)); is-a = IDREF (to match the ID of an abstract
pattern)

Children

include (*), title (?), p (*), param (*), let (*), rule (*)

sch:rule
Lists assertions in a given context. An element node in the document matches only once
per pattern in the first rule whose context attribute matches that node.

Parents

pattern

Attributes

common; id = ID (?); abstract = ("true" (if true, required of
course) | "false" (?)); context = path (required if abstract =
"false" or not present)

Children

assert (+) | extends (+) | report (+), include (*), let (*)

sch:assert

154 | XML Pocket Reference

sch:assert
Lists an assertion about a context node

Parents

rule

Attributes

common; test = expression (required); flag = NCName (?); id = ID
(?); diagnostics = IDREFS (?); role = NCName (?); subject = string
(?)

Children

text, dir (*), emph (*), name (*), span (*)

Other Elements

sch:active
Refers to an active pattern in the current phase

Parents

phase

Attributes

pattern = IDREF (required)

Children

text (*), dir (*), emph (*), span (*)

sch:diagnostic
Details a failed assertion

Parents

diagnostics

Attributes

common; id = ID (required)

sch:emph

Schematron | 155

Children

text (*), dir (*), emph (*), span (*), value-of (*)

sch:diagnostics
Acts as a container for diagnostics

Parents

schema

Attributes

none

Children

include (*), diagnostic (*)

sch:dir
Direction (right or left) of natural text

Parents

active, assert, diagnostic, p, report, title

Attributes

value = "ltr" | "rtl" (?)

Children

text

sch:emph
Marks text to be rendered with emphasis

Parents

active, assert, diagnostic, p, report

Attributes

none

Children

text

sch:extends

156 | XML Pocket Reference

sch:extends
Identifies abstract rules

Parents

rule

Attributes

rule = IDREF (required)

Children

empty

sch:include
References an external XML document with a schema fragment

Parents

diagnostics, pattern, phase, rule, schema

Attributes

src = URI

Children

empty

sch:let
Declares a named variable

Parents

schema, pattern, phase, rule

Attributes

name = NCName (required); value = string (required)

Children

empty

sch:p

Schematron | 157

sch:name
Finds names of nodes

Parents

assert, report

Attributes

path = string (?)

Children

empty

sch:ns
Specifies a namespace URI and prefix. (Note that the @xmlns:* mechanism used to
declare namespaces for elements and attributes is not used.)

Parents

schema

Attributes

prefix = NCName (required); uri = namespace URI (required)

Children

empty

sch:p
Indicates documentation text

Parents

pattern, phase, schema

Attributes

class = (?)

Children

dir (*), emph (*), span (*)

sch:param

158 | XML Pocket Reference

sch:param
Works as a simple macro structure in abstract patterns

Parents

patternfsabstract="true"

Attributes

name = NCName (required); value = string (required, non-empty)

Children

empty

sch:phase
Groups patterns together to allow validation of certain constraints (but denies validation
to some others)

Parents

active

Attributes

common; id = ID (required)

Children

active (*), include (*), let (*), p (*)

sch:report
Similar to assert; makes negative assertion about context nodes

Parents

rule

Attributes

common; test = expression (required); flag = NCName (?); id = ID
(?); diagnostics = IDREFS (?); role = NCName (?); subject = string (?)

Children

text, dir (*), emph (*), name (*), span (*)

sch:value-of

Schematron | 159

sch:span
Marks text for rendering

Parents

active, assert, diagnostic, p, report

Attributes

class = string (?)

Children

text

sch:title
Summarizes the purpose or role of a schema or pattern

Parents

pattern, rule, schema

Attributes

common

Children

text, dir (*)

sch:value-of
Returns values from an XML document

Parents

assert, diagnostic, report

Attributes

select = string (required)

Children

empty

160 | XML Pocket Reference

XML Specifications
The following list of XML-related specifications is by no
means comprehensive but is provided as a quick reference to
the URIs for prominent specs.

• XML 1.0 (Third Edition): http://www.w3.org/TR/REC-xml

• XML 1.1: http://www.w3.org/TR/xml11

• Namespaces in XML 1.0: http://www.w3.org/TR/REC-xml-
names

• Namespaces in XML 1.1: http://www.w3.org/TR/xml-names11

• Resource Directory Description Language (RDDL): http://
www.rddl.org

• Associating Stylesheets with XML 1.0: http://www.w3.org/
TR/xml-stylesheet

• XML Information Set (Second Edition): http://www.w3.org/
TR/xml-infoset

• XSLT 1.0: http://www.w3.org/TR/xslt

• XSLT 2.0: http://www.w3.org/TR/xslt20

• XPath 1.0: http://www.w3.org/TR/xpath

• XPath 2.0: http://www.w3.org/TR/xpath20

• XSL 1.0: http://www.w3.org/TR/xsl

• XSL 1.1: http://www.w3.org/TR/xsl11

• XQuery 1.0: http://www.w3.org/TR/xquery

• XQuery 1.0 and XPath 2.0 Data Model: http://www.w3.org/
TR/xpath-datamodel

• XQuery 1.0 and XPath 2.0 Functions and Operators: http://
www.w3.org/TR/xpath-functions

• XHTML 1.0 (Second Edition): http://www.w3.org/TR/xhtml1

• XHTML Basic: http://www.w3.org/TR/xhtml-basic

• XHTML Modularization: http://www.w3.org/TR/xhtml-
modularization

• XHTML 1.1 (module-based): http://www.w3.org/TR/xhtml11

XML Specifications | 161

• XHTML 2.0: http://www.w3.org/TR/xhtml2

• Canonical XML 1.0: http://www.w3.org/TR/xml-c14n

• XML Schema 1.0 Primer (Second Edition): http://www.w3.
org/TR/xmlschema-0

• XML Schema 1.0 Structures (Second Edition): http://www.
w3.org/TR/xmlschema-1

• XML Schema 1.1 Structures: http://www.w3.org/TR/
xmlschema11-1

• XML Schema 1.0 Datatypes (Second Edition): http://www.
w3.org/TR/xmlschema-2

• XML Schema 1.1 Datatypes: http://www.w3.org/TR/
xmlschema11-2

• RELAX NG tutorial: http://relaxng.org/tutorial-20011203.
html

• RELAX NG compact syntax tutorial: http://relaxng.org/
compact-tutorial-20030326.html

• RELAX NG specification: http://relaxng.org/spec-20011203.
html

• RELAX NG compact syntax specification: http://relaxng.
org/compact-20021121.html

• xml:id 1.0: http://www.w3.org/TR/xml-id

• XML Base 1.0: http://www.w3.org/TR/xmlbase

• XLink 1.0: http://www.w3.org/TR/xlink

• XLink 1.1: http://www.w3.org/TR/xlink11

• XInclude 1.0: http://www.w3.org/TR/xinclude

• Ruby Annotation: http://www.w3.org/TR/ruby

• Scalable Vector Graphics (SVG) 1.1: http://www.w3.org/TR/
SVG11

• Scalable Vector Graphics (SVG) 1.2: http://www.w3.org/TR/
SVG12

• Scalable Vector Graphics (SVG) Tiny 1.2: http://www.w3.
org/TR/SVGMobile12

162 | XML Pocket Reference

• XPointer Framework: http://www.w3.org/TR/xptr-framework

• XPointer element() Scheme: http://www.w3.org/TR/xptr-
element

• XPointer xmlns() Scheme: http://www.w3.org/TR/xptr-xmlns

• XForms 1.0: http://www.w3.org/TR/xforms

• XForms 1.1: http://www.w3.org/TR/xforms11

• SAX (Simple API for XML) 2.0.1: http://www.saxproject.org

• XML Object Model (XOM) 1.0: http://www.cafeconleche.org/
XOM

• XML Pull Parsing: http://www.xmlpull.org

• JSR 173: Streaming API for XML: http://jcp.org/en/jsr/
detail?id=173

• DocBook: http://www.docbook.org

• Universal Business Language (UBL) 1.0: http://docs.oasis-
open.org/ubl/cd-UBL-1.0/

• Universal Description, Discovery, and Integration (UDDI)
3.0.2: http://uddi.org/pubs/uddi_v3.htm

• RSS (Rich Site Summary) 0.91: http://backend.userland.
com/rss091

• RSS (RDF Site Summary) 1.0: http://web.resource.org/rss/
1.0/spec

• RSS (Really Simple Syndication) 2.0: http://blogs.law.harvard.
edu/tech/rss

• Atom (an RFC): http://www.ietf.org/internet-drafts/draft-
ietf-atompub-format-08.txt

163

We’d like to hear your suggestions for improving our indexes. Send email to
index@oreilly.com.

Index

A
active element, Schematron, 154
all element, XML Schema, 64
ancestor element, 11
annotation element, XML

Schema, 65
annotations, schemas, 63
anonymous type definitions,

schemas, 54
any element, XML Schema, 65
anyAttribute element, XML

Schema, 66
anyName element, RELAX

NG, 119
anySimpleType element, XML

Schema, 85
anyURL element, XML

Schema, 85
appInfo element, XML

Schema, 67
assert element, Schematron, 154
attribute element, RELAX

NG, 120
attribute element, XML

Schema, 67
attributeGroup element, XML

Schema, 69

attribute-list declarations, 36
attributes, 13

elements and, 14
global, 51
pseudo-attributes, 23
xml:id, 28
xml:lang, 27
xml:space, 26
xsi:nil, 117
xsi:noNamespaceSchema-

Location, 117
xsi:schemaLocation, 117
xsi:type, 117

B
base64binary element, XML

Schema, 86
boolean element, XML

Schema, 86
byte element, XML Schema, 87

C
case sensitivity, elements, 8
CDATA sections, 24
character references, 16
characters, 15

164 | Index

child element, 11
choice element, RELAX

NG, 121
choice element, XML

Schema, 69
choice operator (|), DTDs, 36, 45
colons in elements, 8
comments, 4, 19

DTDs, 44
parsed character data, 19

complexContentelement, XML
Schema, 70

complexType element, XML
Schema, 70

compositors, 56
conditional sections, DTDs, 45
constraining facets, 102–116
content models, 35

D
data element, RELAX NG, 122
date element, XML Schema, 87
dateTime element, XML

Schema, 87
decimal element, XML

Schema, 88
declarations, 20

attribute-list declarations, 36
DOCTYPE, 24
element types, 35
encoding declarations, 21
standalone document

declarations, 22
text, DTDs, 35

default values, schemas, 61
define element, RELAX NG, 123
descendant element, 11
diagnostic element,

Schematron, 154
diagnostics element,

Schematron, 155
dir element, Schematron, 155

div element, RELAX NG, 125
DOCTYPE (document type

declarations), 4, 24
documennts

DOCTYPEs, 25
document (root) element, 10
documentation element, XML

Schema, 72
documents

DOCTYPEs, 4
DTDs, 4, 33
example of simple, 4
well-formed, 3

double element, XML
Schema, 88

DTDs (document type
definition), 4, 32–47

attribute-list declarations, 36
comments, 44
conditional sections, 45
content models, 35
element type declarations, 35
external subsets, 33

with internal, 39
internal subsets, 37

with external, 39
namespaces, emulation, 37
notations, 45
parameter entities, 33, 43
parsed entities, 41
system identifiers, 34
text declaration, 35
unparsed entities, 45

duration element, XML
Schema, 89

E
element element, RELAX

NG, 126
element element, XML

Schema, 72
element type declarations, 35

Index | 165

elements, 6–13
ancestor element, 11
attributes and, 14
case sensitivity, 8
child element, 11
colons, 8
compositors, 56
descendant element, 11
empty-element tags, 9
end-tags, 8
global, 51
leaf element, 11
mixed content, 12
nesting, 9
parent element, 11
RELAX NG element, 137
root element, 10
sibling elements, 11
start-tags, 8

emph element, Schematron, 155
empty content, XML

Schema, 61
empty element, RELAX

NG, 127
empty-element tags, 9
encoding declarations, 21
end-tags, 8
ENTITIES element, XML

Schema, 90
ENTITY element, XML

Schema, 90
entity references, 16
enumeration element, XML

Schema, 103
except element, RELAX

NG, 128
extends element,

Schematron, 156
extension element, XML

Schema, 74
external subsets, DTDs, 33

with internal, 39
externalRef element, RELAX

NG, 128

F
facets

constraining, 102–117
fundamental, 102

field element, XML Schema, 75
float element, XML Schema, 90
fractionDigits element, XML

Schema, 104

G
gDay element, XML Schema, 91
global attributes, 51
global elements, 51
gMonth element, XML

Schema, 91
gMonthDay element, XML

Schema, 92
grammar element, RELAX

NG, 130
group element, RELAX NG, 131
group element, XML

Schema, 75
gYear element, XML Schema, 92
gYearMonth element, XML

Schema, 93

H
hexBinary element, XML

Schema, 93

I
ID element, XML Schema, 93
IDREF element, XML

Schema, 94
IDREFS element, XML

Schema, 94
import element, XML

Schema, 76
include element, RELAX

NG, 132
include element,

Schematron, 156

166 | Index

include element, XML
Schema, 77

int element, XML Schema, 94
integer element, XML

Schema, 95
interleave element, RELAX

NG, 134
internal subsets, DTDs, 37

with external, 39

K
key element, XML Schema, 77
keyref element, XML

Schema, 78

L
language element, XML

Schema, 95
language, xml:space

attribute, 28
leaf element, 11
length element, XML

Schema, 105
let element, Schematron, 156
list element, RELAX NG, 135
list element, XML Schema, 78
long element, XML Schema, 95

M
markup, 5
maxExclusive element, XML

Schema, 105
maxInclusive element, XML

Schema, 106
maxLength element, XML

Schema, 106
minExclusive element, XML

Schema, 107
minInclusive element, XML

Schema, 108

minLength element, XML
Schema, 108

mixed content, 12
DTDs, 45
XML Schema, 61

mixed element, RELAX NG, 136
model groups, XML

schemas, 60

N
name element, RELAX NG, 137
name element, Schematron, 157
Name element, XML

Schema, 96
named type definitions,

schemas, 54
namespaces, 29

emulation, DTDs, 37
XLink, 31
XML Schema, 52

NCName element, XML
Schema, 96

negativeInteger element, XML
Schema, 96

nesting elements, 9
nil attribute, XML Schema

instance, 117
NMTOKEN element, XML

Schema, 97
NMTOKENS element, XML

Schema, 97
noNamespaceSchemaLocation

attribute, XML Schema
instance, 117

nonNegativeInteger element,
XML Schema, 98

nonPositiveInteger element,
XML Schema, 98

normalizedString element, XML
Schema, 98

notAllowed element, RELAX
NG, 138

Index | 167

NOTATION element, XML
Schema, 99

notation element, XML
Schema, 79

ns element, Schematron, 157
nsName element, RELAX

NG, 139

O
oneOrMore element, RELAX

NG, 140
optional declarations, 20
optional element, RELAX

NG, 140

P
p element, Schematron, 157
param element, RELAX

NG, 141
param element,

Schematron, 158
parameter entities, 33, 43
parent element, 11
parentRef element, RELAX

NG, 143
parsed character data, 19
parsed entities

DTDs and, 41
unparsed entities, 45

pattern element,
Schematron, 153

pattern element, XML
Schema, 109

phase element, Schematron, 158
positiveInteger element, XML

Schema, 99
predefined entity references, 16
processing instructions, 4, 22
pseudo-attributes, 23

Q
QName element, XML

Schema, 99

R
redefine element, XML

Schema, 79
ref element, RELAX NG, 145
RELAX NG, 118–150
report element,

Schematron, 158
restriction element, XML

Schema, 80
rng:anyName element, 119
rng:attribute element, 120
rng:choice element, 121
rng:data element, 122
rng:define element, 123
rng:div element, 125
rng:element element, 126
rng:empty element, 127
rng:except element, 128
rng:externalRef element, 128
rng:grammar element, 130
rng:group element, 131
rng:include element, 132
rng:interleave element, 134
rng:list element, 135
rng:mixed element, 136
rng:name element, 137
rng:notAllowed element, 138
rng:nsName element, 139
rng:oneOrMore element, 140
rng:optional element, 140
rng:param element, 141
rng:parentRef element, 143
rng:ref element, 145
rng:start element, 146
rng:text element, 147
rng:value element, 148

168 | Index

rng:zeroOrMore element, 149
root (document) element, 10
rule element, Schematron, 153

S
sch:active element, 154
sch:assert element, 154
sch:diagnostic element, 154
sch:diagnostics element, 155
sch:dir element, 155
sch:emph element, 155
sch:extends element, 156
sch:include element, 156
sch:let element, 156
sch:name element, 157
sch:ns element, 157
sch:p element, 157
sch:param element, 158
sch:pattern element, 153
sch:phase element, 158
sch:report element, 158
sch:rule element, 153
sch:schema element, 152
sch:span element, 159
sch:title element, 159
sch:value-of element, 159
schema element,

Schematron, 152
schema element, XML

Schema, 80
schema, XML

annotations, 63
attributes, instance

documents, 116–117
constraining facets, 102–116
creating, 48–64
datatypes, 85–102
default values, 61
document structures, 56
elements, 64–85
empty content, 61
mixed content, 61

model groups, 60
namespaces and, 52
RELAX NG, 118–150
structures, elements, 64–85
type definitions

anonymous, 54
named, 54

WXS (W3C SML Schema), 47
XSD (XML schema), 47

schemaLocation attribute, XML
Schema instance, 117

Schematron, 150–159
core elements, 152

sections, conditional, DTDs, 45
selector element, XML

Schema, 82
sequence element, XML

Schema, 82
SGML (Standard Generalized

Markup Language), 2
short element, XML

Schema, 100
sibling elements, 11
simpleContent element, XML

Schema, 83
simpleType element, XML

Schema, 83
span element, Schematron, 159
specifications listing, 160
standalone document

declarations, 22
start element, RELAX NG, 146
start-tags, 8
string element, XML

Schema, 100
structures, 5

attributes, 13
elements, 14

CDATA sections, 24
character references, 16
comments, 19
DOCTYPE declaration, 24

Index | 169

elements, 6–13
ancestor elements, 11
attributes and, 14
child element, 11
descendant element, 11
leaf element, 11
parent element, 11
schemas, 64–85
sibling elements, 11

entity references, 16
mixed content, 12
namespaces, 29
predefined entity

references, 16
processing instructions, 22
root (document) element, 10
schema, XML, 56
text, 15

characters, 15
whitespace, 16

XML declarations, 20
xml:id attribute, 28
xml:lang attribute, 27
xml:space attribute, 26

system identifiers, 34

T
tags

empty-element tags, 9
end-tags, 8
start-tags, 8

targets, processing
instructions, 23

text, 15
characters, 15
whitespace, 16

text declaration, DTDs, 35
text element, RELAX NG, 147
time element, XML Schema, 100
title element, Schematron, 159
token element, XML

Schema, 101

totalDigits element, XML
Schema, 115

type attribute, XML Schema
instance, 117

type definitions, XML Schema
anonymous, 54
named, 54

U
union element, XML

Schema, 84
unique element, XML

Schema, 84
unparsed entities, DTDs, 45
unsignedByte element, XML

Schema, 101
unsignedInt element, XML

Schema, 101
unsignedLong element, XML

Schema, 102
unsignedShort element, XML

Schema, 102

V
value element, RELAX NG, 148
value-of element,

Schematron, 159

W
well-formed documents, 3
whitespace, 16

xml:space attribute, 26
whiteSpace element, XML

Schema, 115
WXS (W3C XML Schema), 47

X
XLink (XML Linking

Language), 31
XML declarations, 20

170 | Index

XML Schema
constraining facets, 102–116
creating, 48–64
datatypes, 85–102
default values, 61
document structures, 56
elements, 64–85
empty content, 61
instance documents, 116–117
mixed content, 61
model groups, 60
namespaces, 52
RELAX NG, 118–150
structures, 64–85
structures, elements, 64–85
type definitions

anonymous, 54
named, 54

WXS (W3C SML Schema), 47
XSD (XML schema), 47

xml:id attribute, 28
xml:lang attribute, 27
xml:space attribute, 26
XSD (XML Schema), 47
xs:all element, 64
xs:annotation element, 65
xs:any element, 65
xs:anyAttribute element, 66
xs:anySimpleType element, 85
xs:anyURL element, 85
xs:appInfo element, 67
xs:attribute element, 67
xs:attributeGroup element, 69
xs:base64binary element, 86
xs:boolean element, 86
xs:byte element, 87
xs:choice element, 69
xs:complexContent element, 70
xs:complexType element, 70
xs:date element, 87
xs:dateTime element, 87
xs:decimal element, 88
xs:documentation element, 72

xs:double element, 88
xs:duration element, 89
xs:element element, 72
xs:ENTITIES element, 90
xs:ENTITY element, 90
xs:enumeration element, 103
xs:extension element, 74
xs:field element, 75
xs:float element, 90
xs:fractionDigits element, 104
xs:gDay element, 91
xs:gMonth element, 91
xs:gMonthDay element, 92
xs:group element, 75
xs:gYear element, 92
xs:gYearMonth element, 93
xs:hexBinary element, 93
xs:ID element, 93
xs:IDREF element, 94
xs:IDREFS element, 94
xs:import element, 76
xs:include element, 77
xs:int element, 94
xs:integer element, 95
xs:key element, 77
xs:keyref element, 78
xs:language element, 95
xs:length element, 105
xs:list element, 78
xs:long element, 95
xs:maxExclusive element, 105
xs:maxInclusive element, 106
xs:maxLength element, 106
xs:minExclusive element, 107
xs:minInclusive element, 108
xs:minLength element, 108
xs:Name element, 96
xs:NCName element, 96
xs:negativeInteger element, 96
xs:NMTOKEN element, 97
xs:NMTOKENS element, 97
xs:nonNegativeInteger, 98

Index | 171

xs:nonPositiveInteger
element, 98

xs:normalizedString element, 98
xs:NOTATION element, 99
xs:notation element, 79
xs:pattern element, 109
xs:positiveInteger element, 99
xs:QName element, 99
xs:redefine element, 79
xs:restriction element, 80
xs:schema element, 80
xs:selector element, 82
xs:sequence element, 82
xs:short element, 100
xs:simpleContent element, 83
xs:simpleType element, 83
xs:string element, 100
xs:time element, 100
xs:token element, 101

xs:totalDigits element, 115
xs:union element, 84
xs:unique element, 84
xs:unsignedByte element, 101
xs:unsignedInt element, 101
xs:unsignedLong element, 102
xs:unsignedShort element, 102
xs:whiteSpace element, 115
xsi:nil attribute, 117
xsi:noNamespaceSchema-

Location attribute, 117
xsi:schemaLocation

attribute, 117
xsi:type attribute, 117

Z
zeroOrMore element, RELAX

NG, 149

	Copyright
	Contents
	XML Pocket Reference
	Introduction
	A Simple XML Document

	XML Structures
	Elements
	Productions
	Examples
	Description
	See also

	Attributes
	Productions
	Examples
	Description
	See also

	Text
	Productions
	Examples
	Description
	See also

	Character, Entity, and Predefined Entity References
	Productions
	Examples
	Description
	See also

	Comments
	Productions
	Examples
	Description
	See also

	The XML Declaration
	Productions
	Examples
	Description
	See also

	Processing Instructions
	Productions
	Examples
	Description
	See also

	CDATA Sections
	Productions
	Examples
	Description
	See also

	The DOCTYPE Declaration
	Productions
	Examples
	Description
	See also

	The xml:space Attribute
	Example
	Description
	See also

	The xml:lang Attribute
	Example
	Description
	See also

	The xml:id Attribute
	Example
	Description
	See also

	XML Namespaces
	Examples
	Description
	See also

	Document Type Definitions
	Productions
	Examples
	Description
	Emulating namespace support in DTDs
	Internal subset
	Using internal and external subsets together
	Parsed entities
	Parameter entities
	Other things that can go in a DTD
	See also

	W3C XML Schema
	Creating a Simple Schema
	Namespaces
	Named and anonymous type definitions
	Varied document structures

	Compositors
	When anything is allowed
	Model groups
	Empty content, mixed content, and default values
	Annotations

	XML Schema Structure Elements
	xs:all
	xs:annotation
	xs:any
	xs:anyAttribute
	xs:appInfo
	xs:attribute
	xs:attributeGroup
	xs:choice
	xs:complexContent
	xs:complexType
	xs:documentation
	xs:element
	xs:extension
	xs:field
	xs:group
	xs:import
	xs:include
	xs:key
	xs:keyref
	xs:list
	xs:notation
	xs:redefine
	xs:restriction
	xs:schema
	xs:selector
	xs:sequence
	xs:simpleContent
	xs:simpleType
	xs:union
	xs:unique

	XML Schema Datatypes
	xs:anySimpleType
	xs:anyURI
	xs:base64binary
	xs:boolean
	xs:byte
	xs:date
	xs:dateTime
	xs:decimal
	xs:double
	xs:duration
	xs:ENTITIES
	xs:ENTITY
	xs:float
	xs:gDay
	xs:gMonth
	xs:gMonthDay
	xs:gYear
	xs:gYearMonth
	xs:hexBinary
	xs:ID
	xs:IDREF
	xs:IDREFS
	xs:int
	xs:integer
	xs:language
	xs:long
	xs:Name
	xs:NCName
	xs:negativeInteger
	xs:NMTOKEN
	xs:NMTOKENS
	xs:nonNegativeInteger
	xs:nonPositiveInteger
	xs:normalizedString
	xs:NOTATION
	xs:positiveInteger
	xs:QName
	xs:short
	xs:string
	xs:time
	xs:token
	xs:unsignedByte
	xs:unsignedInt
	xs:unsignedLong
	xs:unsignedShort

	XML Schema Constraining Facets
	xs:enumeration
	xs:fractionDigits
	xs:length
	xs:maxExclusive
	xs:maxInclusive
	xs:maxLength
	xs:minExclusive
	xs:minInclusive
	xs:minLength
	xs:pattern
	xs:totalDigits
	xs:whiteSpace

	XML Schema Attributes for Use in Instance Documents
	xsi:nil
	xsi:noNamespaceSchemaLocation
	xsi:schemaLocation
	xsi:type

	RELAX NG
	rng:anyName
	rng:attribute
	rng:choice
	rng:data
	rng:define
	rng:div
	rng:element
	rng:empty
	rng:except
	rng:externalRef
	rng:grammar
	rng:group
	rng:include
	rng:interleave
	rng:list
	rng:mixed
	rng:name
	rng:notAllowed
	rng:nsName
	rng:oneOrMore
	rng:optional
	rng:param
	rng:parentRef
	rng:ref
	rng:start
	rng:text
	rng:value
	rng:zeroOrMore

	Schematron
	Core Elements
	sch:schema
	sch:pattern
	sch:rule
	sch:assert

	Other Elements
	sch:active
	sch:diagnostic
	sch:diagnostics
	sch:dir
	sch:emph
	sch:extends
	sch:include
	sch:let
	sch:name
	sch:ns
	sch:p
	sch:param
	sch:phase
	sch:report
	sch:span
	sch:title
	sch:value-of

	XML Specifications

	Index

